Yes it is, in other simplified terms density compares the amount of matter an object has to its volume.
Answer:
Basically, at these speeds, the car will, at random times, swerve a bit to one side or the other as if hit by some huge wind (even on the calmest of days). It doesn't happen at slower speeds driving mechanically identical cars, managed to accelerate to a formidable 150 mph and stay there for most of the journey, shifting to higher gears and remaining.
Hope this helped you!
Explanation:
<span>6.6 degrees C
Let's model the student as a 125 w furnace that's been operating for 11 minutes. So
125 w * 11 min = 125 kg*m^2/s^3 * 11 min * 60 s/min = 82500 kg*m^2/s^2 = 82500 Joule
So the average kinetic energy increase of each gas molecule is
82500 J / 6.0x10^26 = 1.38x10^-22 J
Now the equation that relates kinetic energy to temperature is:
E = (3/2)Kb*Tk
E = average kinetic energy of the gas particles
Kb = Boltzmann constant (1.3806504Ă—10^-23 J/K)
Tk = Kinetic temperature in Kelvins
Notice the the energy level of the gas particles is linear with respect to temperature. So we don't care what the original temperature is, we just need to know by how much the average energy of the gas particles has increased by.
So let's substitute the known values and solve for Tk
E = (3/2)Kb*Tk
1.38x10^-22 J = (3/2)1.3806504Ă—10^-23 J/K * Tk
1.38x10^-22 J = 2.0709756x10^-23 J/K * Tk
6.64 K = Tk
Rounding to 2 significant digits gives 6.6K. So the temperature in the room will increase by 6.6 degrees K or 6.6 degrees C, or 11.9 degrees F.</span>
Answer:

Explanation:
Given

Required
Find x
Since the triangle is a 45-45-90 triangle, the following relationship exists
--- i.e. the other legs are equal
So, we have:

Divide both sides by 2

Take square roots of both sides

Simplify

The answer is
<em>All the three light bulbs will glow</em>
hope this helps