<span>A magnetic field would be produced by a beam of (3) protons.
Although you could easily make a case for any of these four options (the question is pretty ambiguous), there can be only one correct answer, which is the third option, in this case.
</span>
Answer:
-17.8 V
Explanation:
The induced emf in a coil is given as:

where N = number of loops
dB = change in magnetic field
r = radius of coil
dt = elapsed time
From the question:
N = 50
dB = final magnetic field - initial magnetic field
dB = 0.35 - 0.10 = 0.25 T
r = 3 cm
dt = 2 ms = 0.002 secs
Therefore, the induced emf is:

Note: The negative sign implies that the EMf acts in an opposite direction to the change in magnetic flux.
Explicacion
m = 65 kg
g = 10 m/s²
r = 0.5 cm (1m / 100 cm) = 0.05 m
A = π r² = π (0.05 m)² = 0.00785 m²
F =W = m g = 65 kg(10 m/s²) = 650 N
P = F/A = 650 N / 0.00785 m² = 82802.54 N/m²
Its pretty expensive and can't be replaced immediately and some source like nuclear energy produces nuclear waste which produce radioisotope that is harmful for all living beings