Answer:
B
Explanation:
living things are not required to move
Answer:
After 1326s, the concentration of pyruvic acid fall to 1/64 of its initial concentration.
Explanation:
The first order kinetics reaction is:
ln [A] = ln [A]₀ - kt
<em>Where [A] is concentration after t time, [A]₀ is intial concentration and k is reaction constant.</em>
To convert half-life to k you must use:
t(1/2) = ln 2 / K
221s = ln 2 / K
K = ln 2 / 221s
<h3>K = 3.1364x10⁻³s⁻¹</h3>
If [A] = 1/64, [A]₀ = 1:
ln [A] = ln [A]₀ - kt
ln (1/64) = ln 1 - 3.1364x10⁻³t
4.1588 = 3.1364x10⁻³s⁻¹t
1326s = t
<h3>After 1326s, the concentration of pyruvic acid fall to 1/64 of its initial concentration.</h3>
<em />
Answer:
Coefficients
Explanation:
Chemical equations are first written as a skeleton equation, which includes how many atoms each element and compound has. Skeleton equations are not 'balanced' because the number of atoms of each element on the left side (reactants) is not equal to the right side (products).
To balance a chemical equation, you can write coefficients in front of single elements and compounds. The coefficient multiplies with each single element and with each element in the compound.
For example, in this skeleton equation:
H₂ + Cl₂ => HCl
Reactants: Products:
2 hydrogen 1 hydrogen
2 chlorine 1 chlorine
Write the coefficient 2 in the products.
H₂ + Cl₂ => 2HCl
Now both reactant and product sides have 2 chlorine and 2 hydrogen, so the equation is balanced.
In the case of an emergency where you might not have enough time to read several lines of writing, not to mention trying to find the hazard warnings when the whole bottle is probably covered in writing, it is much easier to locate and read universal hazard symbols.