Answer:
Hexaflourine Pentaiodide?
Explanation:
f = flourine (6 = hexa)
i = iodine (5 = penta) + ide
Answer:
41 mL
Explanation:
Given data:
Milliliter of HCl required = ?
Molarity of HCl solution = 4.25 M
Mass of CaCO₃ = 8.75 g
Solution:
Chemical equation:
2HCl + CaCO₃ → CaCl₂ + CO₂ + H₂O
Number of moles of CaCO₃:
Number of moles = mass/molar mass
Number of moles = 8.75 g / 100.1 g/mol
Number of moles = 0.087 g /mol
Now we will compare the moles of CaCO₃ with HCl.
CaCO₃ : HCl
1 : 2
0.087 : 2/1×0.087 = 0.174 mol
Volume of HCl:
Molarity = number of moles / volume in L
4.25 M = 0.174 mol / volume in L
Volume in L = 0.174 mol /4.25 M
Volume in L = 0.041 L
Volume in mL:
0.041 L×1000 mL/ 1L
41 mL
3.3256 Liters
See the image I have shared to you above
We have to know which two substances are related correctly.
The correct answer is: (C) H₃O⁺ is the conjugate acid of H₂O.
In an acid-base reaction, an acid reacts with a base and gives a conjugate base and conjugate acid. The reaction is shown below:
Acid₁ + Base₂ ⇄ Conjugate Base₁ + Conjugate Acid₂
In the reaction H₂CO₃ + H₂O ⇌ H₃O⁺ + HCO₃⁻, H₂CO₃ is an acid because it releases H⁺ ion and converts to HCO₃⁻. Here HCO₃⁻ is the conjugate base of H₂CO₃ ( according Arrhenius theory).
H₂O accepts H⁺ ion and is converted to H₃O⁺ , thus H₂O behaves as Bronsted base. So, H₃O⁺ is the conjugate acid of Bronsted base H₂O.
Hence, the correct answer is: (C) H₃O⁺ is the conjugate acid of H₂O.
688x
Explanation- Your welcome