The question is basically asking what is happening to the energy (that is in the form of heat) when it is being absorbed by an object. The energy being absorbed from the heat source is being turned into kinetic energy. This can be explained by temperature change. As you add more heat to an object, the temperature rises. Since temperature is the average kinetic energy of all of the molecules in an object, we can say that as temperature rises so does the kinetic energy of the molecules in the object. Due to the fact that heat is causing the temperature to increase, we can say that the energy from the heat is being turned into kinetic energy.
I hope this helps. Let me know in the comments if anything is unclear.
Answer:
1 ) 0.274 mol N2
2 ) 5.847 mol KNO3
yea... im just gonna do two fo them, i think u can figure it out from there
Explanation:
In the given situation, the reaction is-
NO + H2 ↔ Products
The rate of the reaction can be expressed (in terms of the decrease in the concentration of the reactants) as-
Rate = -dΔ[NO]/dt = -dΔ[H2]/dt
Now, if the concentration of NO is decreased there will be fewer molecules of the reactant NO which would decrease the its collision with H2. As a result the rate of the forward reaction would also decrease.
Ans) A decrease in the concentration of nitrogen monoxide decreases the collisions between NO and H2 molecules. the rate of the forward reaction then decreases.
I’m pretty sure 8 as well because elctrouns can’t hold more than that
Answer:
2Mg + O2 → 2MgO
Explanation:
In all conbustion you should know, that reactans are an specific compound and O2, so the products must be CO2 and H2O, or in this case, the corresponding oxide.