One of the same-side exterior angles formed by two lines and a transversal is equal to 1/6 of the right angle and is 11 times smaller than the other angle. Then the lines are parallel
<h3><u>Solution:</u></h3>
Given that, One of the same-side exterior angles formed by two lines and a transversal is equal to 1/6 of the right angle and is 11 times smaller than the other angle.
We have to prove that the lines are parallel.
If they are parallel, sum of the described angles should be equal to 180 as they are same side exterior angles.
Now, the 1st angle will be 1/6 of right angle is given as:

And now, 15 degrees is 11 times smaller than the other
Then other angle = 11 times of 15 degrees

Now, sum of angles = 15 + 165 = 180 degrees.
As we expected their sum is 180 degrees. So the lines are parallel.
Hence, the given lines are parallel
Answer:
5n + 2x + 13
Step-by-step explanation:
5n + 5 + 2x + 8 =
5n + 2x + 13
Hope that helps!
Answer:
The amount of heat required to raise the temperature of liquid water is 9605 kilo joule .
Step-by-step explanation:
Given as :
The mass of liquid water = 50 g
The initial temperature =
= 15°c
The final temperature =
= 100°c
The latent heat of vaporization of water = 2260.0 J/g
Let The amount of heat required to raise temperature = Q Joule
Now, From method
Heat = mass × latent heat × change in temperature
Or, Q = m × s × ΔT
or, Q = m × s × (
-
)
So, Q = 50 g × 2260.0 J/g × ( 100°c - 15°c )
Or, Q = 50 g × 2260.0 J/g × 85°c
∴ Q = 9,605,000 joule
Or, Q = 9,605 × 10³ joule
Or, Q = 9605 kilo joule
Hence The amount of heat required to raise the temperature of liquid water is 9605 kilo joule . Answer