This problem is a combination of the Poisson distribution and binomial distribution.
First, we need to find the probability of a single student sending less than 6 messages in a day, i.e.
P(X<6)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)
=0.006738+0.033690+0.084224+0.140374+0.175467+0.175467
= 0.615961
For ALL 20 students to send less than 6 messages, the probability is
P=C(20,20)*0.615961^20*(1-0.615961)^0
=6.18101*10^(-5) or approximately
=0.00006181
Answer:
Step-by-step explanation:
2,3 has I lower unit than 3,2 let’s say that we plot it we see that 2,3 is lower down 3,2 :)
It’s nonporportiniol sorry if it’s spelled wrong lol
10+8h=66
minus 10 both sides
8h=56
divide both sides by 8
h=7
worked 7 hours
Answer:
True
Step-by-step explanation:
In order for a relation (a set of ordered pairs) to be considered a <em>function</em>, every value in the <em>domain</em> (the set of all the first numbers in the pair) is associated with one value in the <em>range</em> (the set of all second numbers in the pair). This is easiest to see visually. Our domain is the set {2, 3, 4, 5} and our range is the set {4, 6, 8, 10}, and we can visualize the ordered pair (2, 4) as an "arrow" starting a 2 in the domain and ending at 4 in the range. When seen this way, a relation is a function if <em>every value in the domain only has one arrow coming out of it</em>. We can see from the attached picture that the ordered pairs in the problem are a function, so this statement is true.