Answer:
0.6 moles NH₃
Explanation:
The reaction that takes place is:
First we <u>determine the limiting reactant</u>:
- 0.35 mol N₂ would react completely with (3*0.35) 1.05 moles of H₂. There are not as many H₂ moles, so H₂ is the limiting reactant.
Then we <u>convert H₂ moles (the limiting reactant) to NH₃ moles</u>, keeping in mind the <em>stoichiometry of the reaction</em>:
- 0.90 mol H₂ *
= 0.6 moles NH₃
Here are some disadvantages, is that nitrogen dioxide is a toxic gas and it can still be harmful when ingested by human, also critics of hydrogen fuel cells argue that although these cells do not emit carbon after burning, they give out nitrogen dioxide and other emissions.
Hope this helps
Answer: Option (C) is the correct answer.
Explanation:
Chemical formula of a secondary amide is R'-CONH-R, where R and R' can be same of different alkyl or aryl groups. Here, the hydrogen atom of amide is attached to more electronegative oxygen atom of the C=O group.
Therefore, the hydrogen atom will be more strongly held by the electronegative oxygen atom. As a result, there will be strongly hydrogen bonded in the liquid phase of secondary amide.
Whereas chemical formula of nitriles is RCN, ester is RCOOR' and acid chlorides are RCOCl. As no hydrogen bonding occurs in any of these compounds because hydrogen atom is not being attached to an electronegative atom.
Thus, we can conclude that secondary amides are strongly hydrogen bonded in the liquid phase.
Answer:
B
Explanation:
The gravity accelleration values are the same for both planets.