A 1. 00 ml sample of an unknown gas effuses in 11. 1 min. an equal volume of h2 in the same apparatus under the same conditions effuses in 2. 42 minutes then the molar mass of the unknown gas is 41.9.
Molar mass of H2 = 2
Molar mass of unknown gas = ?
rate 1 = 11.1
rate 2 = 2.42
<h3>What is graham law? </h3>
Graham's law states that the rate of diffusion or effusion of a given gas is inversely proportional to the square root of its molar mass.
By apply graham law
Rate1/rate2 = sqrt(MW2/MW1)
![[\frac{rate1}{rate2} ]^{2} = \frac{MW2}{2} \\\\\\mw= 2[\frac{11.1}{2.42} ]^{2} \\\\= 20.97 X 2 \\\\= 41.9](https://tex.z-dn.net/?f=%5B%5Cfrac%7Brate1%7D%7Brate2%7D%20%5D%5E%7B2%7D%20%3D%20%5Cfrac%7BMW2%7D%7B2%7D%20%5C%5C%5C%5C%5C%5Cmw%3D%202%5B%5Cfrac%7B11.1%7D%7B2.42%7D%20%5D%5E%7B2%7D%20%5C%5C%5C%5C%3D%2020.97%20X%202%20%5C%5C%5C%5C%3D%2041.9)
Thus, we found that the molar mass of the unknown gas is 41.9.
Learn more about graham's law: brainly.com/question/12415336
#SPJ4
Answer:
Reactive and lose 1 electron
Explanation:
Answer:
Metallic bonding is found in metals and their alloys. When the atoms give up their valence electrons, they form ions. These ions are held together by the electron cloud surrounding them. Metals are shiny because they have a lot of free (i.e. delocalized) electrons that form a cloud of highly mobile negatively charged electrons on and beneath the smooth metal surface in the ideal case. ... In the absence of any external EM field, the charges in the plasma are uniformly distributed within the metal.
Explanation:
In metallic bonding, the electrons are “surrendered” to a common pool and become shared by all the atoms in the solid metal.
The correct answer is Shale
<span>MicroR Meter, with Sodium Iodide Detector
<span>Geiger Counter, with Geiger-Mueller (GM) Tube or Probe
<span>Portable Multichannel Analyzer</span>
</span>
</span>