The answer is D.1.950 g
The sponsoring editor for this book was Kenneth P. McCombs and the production supervisor was Sherri Souffrance. It was set in Times Roman by International Typesetting and Composition. The art director for the cover was Anthony Landi. Printed and bound by RR Donnelley.
This book is printed on acid-free paper.
McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGraw-Hill Professional, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore.
Answer:
The rate of consumption of
is 2.0 mol/L.s
Explanation:
Applying law of mass action to this reaction-
![-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=-\frac{1}{3}\frac{\Delta [O_{2}]}{\Delta t}=\frac{1}{2}\frac{\Delta [N_{2}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D-%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7B%5CDelta%20%5BO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5CDelta%20%5BN_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
where
represents rate of consumption of
,
represents rate of consumption of
,
represents rate of formation of
and
represents rate of formation of
.
Here rate of formation of
is 3.0 mol/(L.s)
From the above equation we can write-
![-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
Here ![\frac{\Delta [H_{2}O]}{\Delta t}=3.0 mol/(L.s))](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D%3D3.0%20mol%2F%28L.s%29%29)
So, ![-\frac{\Delta [NH_{3}]}{\Delta t}=\frac{4}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B4%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
Hence,
Didjtntbbfjchfjfnt thriving tkfkdkalemrnnfnfjcjfjfjrj
Explanation:
1. Explain how groups 1A-8A in the periodic table are organized by their number of valence electrons.
The valence electrons in an atom are the outermost shell electrons. They are the most loosely held electrons in an atom.
Coincidentally, the periodic table of elements divided into vertical groups and horizontal periods can be said to be arranged according to the number of valence electrons.
- Atomic numbers are used to arrange elements on the periodic table.
- Down a group, the number of electronic shell increases. More electrons are added to new energy levels.
- As we move from left to right across a period, the number of electrons in elements increases but electronic shell is the same.
- Down a group electronic shell increases but the number of valence electrons are the same.
- All elements in Group 1A has just one valence electrons, Group 2A has two valence electrons.........Group 8A has eight valence electrons.
- Moving across groups is synonymous to moving from left to right on the periodic table.
- Due to this trend, the periodic table is arranged based on the number of valence electrons.
3. explain how you know the number of valence electrons for each group.
The number of valence electrons in a group is the group number:
Group Number valence electrons
1A 1
2A 2
3A 3
4A 4
5A 5
6A 6
7A 7
8A 8
learn more:
Periodic table brainly.com/question/1971327
#learnwithBrainly
Answer:
Vapour pressure of a liquid varies with temperature
Explanation:
The vapour pressure of any liquid is directly proportional to the temperature of the liquid. This implies that, as the temperature of the liquid increases, the vapour pressure increases likewise and vice versa.
Since the vapour pressure of liquid varies with the temperature of the liquid, it is essential to know the water temperature in the experiment to determine the vapour pressure of water.