<span>(2.09 mL) x (1.592 g/mL) / (227.0871 g C3H5O9N3/mol) = 0.014652 mole C3H5O9N
4 moles C3H5O9N produce 12 + 6 + 1 + 10 = 29 moles of gases, so:
(0.014652 mole C3H5O9N) x (29/4) = 0.106 mole of gases
(b)
(0.106 mol) x (46 L/mol) = 4.88 L gases
(c)
(0.014652 mole C3H5O9N) x (6/4) x (28.0134 g/mol) = 0.616 g N2</span>
<u>Given:</u>
Initial concentration of potassium iodate (KIO3) M1 = 0.31 M
Initial volume of KIO3 (stock solution) V1 = 10 ml
Final volume of KIO3 V2 = 100 ml
<u>To determine:</u>
The final concentration of KIO3 i.e. M2
<u>Explanation:</u>
Use the relation-
M1V1 = M2V2
M2 = M1V1/V2 = 0.31 M * 10 ml/100 ml = 0.031 M
Ans: The concentration of KIO3 after dilution is 0.031 M
Answer:
These two numbers are fixed for an element. The mass number tells us the number the sum of nucleons of protons and neutrons in the nucleus of an atom. The atomic number also known as the proton number is the number of protons found in the nucleus of an atom. ... The atomic number uniquely identifies a chemical element.
Explanation:
Answer:
the action or process of filtering something.