Q = m c T
c= 0.140 j/(g x °c)
m= 250.0g
T =52
hope you can solve it now
*Answer:
Option A: 59.6
Explanation:
Step 1: Data given
Mass of aluminium = 4.00 kg
The applied emf = 5.00 V
watts = volts * amperes
Step 2: Calculate amperes
equivalent mass of aluminum = 27 / 3 = 9
mass of deposit = (equivalent mass x amperes x seconds) / 96500
4000 grams = (9* amperes * seconds) / 96500
amperes * seconds = 42888888.9
1 hour = 3600 seconds
amperes * hours = 42888888.9 / 3600 = 11913.6
amperes = 11913.6 / hours
Step 3: Calculate kilowatts
watts = 5 * 11913.6 / hours
watts = 59568 (per hour)
kilowatts = 59.6 (per hour)
The number of kilowatt-hours of electricity required to produce 4.00kg of aluminum from electrolysis of compounds from bauxite is 59.6 kWh when the applied emf is 5.00V
Is there a picture of the isotope or?- becaue I can’t help if I don’t have a visual.
Hi, I am Rosy67 and im here to help.
I have read your sentence and i believe the answer is the following;
True.
Hope this could help!!!!!
~Rosy67
(PS, Can i have brainliest? Im trying to level up) :) *_*
Answer:
0.1 M NaOH, 3 M NH3, 0.01 M CH3COOH, 0.01 M H2SO4, 0.1 M HCl
Explanation:
Strong acids are more acids than weak acids. In the same way, strong bases are more basic than weak bases that are in the same concentration.
Then, the more concentrated acid or base will be more acidic or basic.
CH3COOH. Weak acid
NaOH. Strong base
H2SO4. Strong acid
NH3. Weak base.
HCl. Strong acid
The less acid (More basic):
<h3>0.1 M NaOH, 3 M NH3, 0.01 M CH3COOH, 0.01 M H2SO4, 0.1 M HCl</h3>
Strong base, weak base, weak acid, diluted strong acid, undiluted strong acid