300 divided by 55 = 5.45
It’s 5 since it’s the whole number
Answer:
The probability that a performance evaluation will include at least one plant outside the United States is 0.836.
Step-by-step explanation:
Total plants = 11
Domestic plants = 7
Outside the US plants = 4
Suppose X is the number of plants outside the US which are selected for the performance evaluation. We need to compute the probability that at least 1 out of the 4 plants selected are outside the United States i.e. P(X≥1). To compute this, we will use the binomial distribution formula:
P(X=x) = ⁿCₓ pˣ qⁿ⁻ˣ
where n = total no. of trials
x = no. of successful trials
p = probability of success
q = probability of failure
Here we have n=4, p=4/11 and q=7/11
P(X≥1) = 1 - P(X<1)
= 1 - P(X=0)
= 1 - ⁴C₀ * (4/11)⁰ * (7/11)⁴⁻⁰
= 1 - 0.16399
P(X≥1) = 0.836
The probability that a performance evaluation will include at least one plant outside the United States is 0.836.
−
4
x
+
7
=
2
Step 1: Subtract 7 from both sides.
−
4
x
+
7
−
7
=
2
−
7
−
4
x
=
−
5
Step 2: Divide both sides by -4.
−
4
x
−
4
=
−
5
−
4
x
=
5
4
Answer:
t≈8.0927
Step-by-step explanation:
h(t) = -16t^2 + 128t +12
We want to find when h(t) is zero ( or when it hits the ground)
0 = -16t^2 + 128t +12
Completing the square
Subtract 12 from each side
-12 = -16t^2 + 128t
Divide each side by -16
-12/-16 = -16/-16t^2 + 128/-16t
3/4 = t^2 -8t
Take the coefficient of t and divide it by 8
-8/2 = -4
Then square it
(-4) ^2 = 16
Add 16 to each side
16+3/4 = t^2 -8t+16
64/4 + 3/4= (t-4)^2
67/4 = (t-4)^2
Take the square root of each side
±sqrt(67/4) =sqrt( (t-4)^2)
±1/2sqrt(67) = (t-4)
Add 4 to each side
4 ±1/2sqrt(67) = t
The approximate values for t are
t≈-0.092676
t≈8.0927
The first is before the rocket is launched so the only valid answer is the second one
Answer:
22.25 ft long
if you add 10.5 with 11.75 you'll get 22.25