When it travels 3m ,4m and 5m it means 12m is right answer.
Mechanical advantage = ideal mechanical advantage x efficiency = 3.5 x 0.6 = 2.1
The mechanical advantage of the inclined plane is 2.1
Answer:
TIME he applied the fertilizer to each plant
Explanation:
Independent variable in an experiment is the variable that is subject to change or manipulation by the experimenter. In this experiment, Bob wanted to investigate the effects of plant fertilizer. Bob sets up the experiment by applying the fertilizer to each plant at DIFFERENT TIMES i.e. plant 1-every morning, plant 2-once a week, plant 3-never.
Based on this, it is obvious that the independent or manipulated variable is the TIME at which he applied the fertilizer. On the other hand, the dependent or measured variable is the height of the plants.
Answer:
A) 26V
Explanation:
(a) the potential difference between the plates
Initial capacitance can be calculated using below expresion
C1= A ε0/ d1
Where d1= distance between = 2.70 mm= 2.70× 10^-3 m
ε0= permittivity of space= 8.85× 10^-12 Fm^-1
A= area of the plate = 7.90 cm2 = 7.90 ×10^-4 m^2
If we substitute the values we
C1= A ε0/ d1
=( 7.90 ×10^-4 × 8.85× 10^-12 )/2.70× 10^-3
C1=2.589 ×10^-12 F= 2.59 pF
Initial charge can be determined using below expresion
q1= C1 × V1
V1=2.589 ×10^-12 F
V1= voltage=7.90 V
If we substitute we have
q1= 2.589 ×10^-12 × 7.90
q1= 20.45×10^-12C
20.45 pC
Final capacitance can be calculated as
C2= A ε0/ d2
d2=8.80 mm= /8.80× 10^-3
7.90 ×10^-4 × 8.85× 10^-12 )/8.80× 10^-3
C1=0.794 ×10^-12 F= 0.794 pF
Final charge= initial charge
q2=q1 (since the battery is disconnected)
q2=q1= 20.45 pC
Final potential difference
V2= q/C2
= 20.45/0.794
= 26V