During the first phase of acceleration we have:
v o = 4 m/s; t = 8 s; v = 13 m/s, a = ?
v = v o + a * t
13 m/s = 4 m / s + a * 8 s
a * 8 s = 9 m/s
a = 9 m/s : 8 s
a = 1.125 m/s²
The final speed:
v = ?; v o = 13 m/s; a = 1.125 m/s² ; t = 16 s
v = v o + a * t
v = 13 m/s + 1.125 m/s² * 16 s
v = 13 m/s + 18 m/s = 31 m/s
Answer: 20.2 m/s
Explanation:
From the question above, we have the following data;
M1 = 800kg
M2 = 1200kg
V1 = 13m/s
V2 = 25m/s
U (common velocity) =?
M1V1 + M2V2 = (M1 + M2). U
(800*13) + (1200*25) = (800+1200) * U
10400 + 30000 = 2000u
40400 = 2000u
U = 40400 / 2000
U = 20.2 m/s
Answer:
100.390407
Explanation:
To find acceleration, you would use the formula a=f/m (acceleration equals force divided by mass) and then once you enter those numbers in the formula, a=180/1.793. Then you divide 180 divided by 1.793 which gets you an answer of 100.390407.
Answer:
a)Distance traveled during the first second = 4.905 m.
b)Final velocity at which the object hits the ground = 38.36 m/s
c)Distance traveled during the last second of motion before hitting the ground = 33.45 m
Explanation:
a) We have equation of motion
S = ut + 0.5at²
Here u = 0, and a = g
S = 0.5gt²
Distance traveled during the first second ( t =1 )
S = 0.5 x 9.81 x 1² = 4.905 m
Distance traveled during the first second = 4.905 m.
b) We have equation of motion
v² = u² + 2as
Here u = 0, s= 75 m and a = g
v² = 0² + 2 x g x 75 = 150 x 9.81
v = 38.36 m/s
Final velocity at which the object hits the ground = 38.36 m/s
c) We have S = 0.5gt²
75 = 0.5 x 9.81 x t²
t = 3.91 s
We need to find distance traveled last second
That is
S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m
Distance traveled during the last second of motion before hitting the ground = 33.45 m
Answer:
8 units
Explanation:
F=(k*q1*q2)/(r^2)
K is a constant, q1 is charge of 1, q2 is charge of 2, r is distance between the two.