Answer:6.28
Step-by-step explanation:
C=pi*diameter
C=3.14*2
C=6.28
Answer:
X=2.6
Step-by-step explanation:
Formula is y = a(x-h)^2 + k
Where h is 1 and k is 1
f (x) = a(x-1)^2 + 1
-3 = a(0-1)^2 + 1
-3 = a(-1)^2 + 1
-3 = a(1) + 1
-3 - 1 = a
-4 = a
a = -4
A must be equal to -4
y = -4(x-1)^2 + 1
0 = -4(x-1)^2 + 1
4(x^2 - 2x + 1) - 1 = 0
4x^2 - 8x + 4 - 1 = 0
4x^2 - 8x + 3 = 0
4x^2 - 8x = -3
Divide fpr 4 each term of the equation....x^2 - 2x = -3/4
We must factor the perfect square ax^2 + bx + c which we don't have. We must follow the rule (b/2)^2 where b is -2....(-2/2)^2 =
(-1)^2 = 1 and we add up that to both sides
x^2 - 2x + 1 = -3/4 + 1
x^2 - 2x + 1 = 1/4
(x-1)^2 = 1/4
square root both sides x-1 = (+/-) 1/2
x1 = +1/2 + 1 = 3/2
x2 = -1/2 + 1 = 1/2
x-intercepts are 1/2 and 3/2, in form (3/2,0); (1/2,0)
Answer:
<u>y = w and ΔABC ~ ΔCDE</u>
Step-by-step explanation:
Given sin(y°) = cos(x°)
So, ∠y + ∠x = 90° ⇒(1)
And as shown at the graph:
ΔABC is aright triangle at B
So, ∠y + ∠z = 90° ⇒(2)
From (1) and (2)
<u>∴ ∠x = ∠z </u>
ΔCDE is aright triangle at D
So, ∠x + ∠w = 90° ⇒(3)
From (1) and (3)
<u>∴ ∠y = ∠w</u>
So, for the triangles ΔABC and ΔCDE
- ∠A = ∠C ⇒ proved by ∠y = ∠w
- ∠B = ∠D ⇒ Given ∠B and ∠D are right angles.
- ∠C = ∠E ⇒ proved by ∠x = ∠z
So, from the previous ΔABC ~ ΔCDE by AAA postulate.
So, the answer is <u>y = w and ΔABC ~ ΔCDE</u>
Answer:110
Step-by-step explanation:x^2+17x=15x+35
x^2+17x-15x-35=0
x^2+2x-35=0
delta=2^2-4*1*(-35)=4+140=144
x1=(-2+V144)/2=(-2+12)/2=10/2
x=5
so 15*5+35=75+35=110