The full question asks to decide whether the gas was a specific gas. That part is missing in your question. You need to decide whether the gas in the flask is pure helium.
To decide it you can find the molar mass of the gas in the flask, using the ideal gas equation pV = nRT, and then compare with the molar mass of the He.
From pV = nRT you can find n, after that using the mass of gass in the flask you use MM = mass/moles.
1) From pV = nRT, n = pV / RT
Data:
V = 118 ml = 0.118 liter
R = 0.082 atm*liter/mol*K
p = 768 torr * 1 atm / 760 torr = 1.0105 atm
T = 35 + 273.15 = 308.15 K
n = 1.015 atm * 0.118 liter / [ 0.082 atm*liter/K*mol * 308.15K] =0.00472 mol
mass of gas = mass of the fask with the gas - mass of the flasl evacuated = 97.171 g - 97.129 g = 0.042
=> MM = mass/n = 0.042 / 0.00472 = 8.90 g/mol
Now from a periodic table or a table you get that the molar mass of He is 4g/mol
So the numbers say that this gas is not pure helium , because its molar mass is more than double of the molar mass of helium gas.
Answer:
No
Explanation:
In ideal solutions, the interactions between solute - solvent are approximately the same as those of solute - solute and solvent - solvent, that is the interactions are to be practically indistintiguishable after disolution.
The moment we have a release of energy (the solution feels warm) we are to conclude that there are strong interactions between the water and methanol molecules so we would expect the solution to be non ideal.
The reason for the interactions is the presence of hydrogen bonds between methanol and water.
Im pretty sure its A funding because thats alot of money
The answer is going to be mercury
From own experience, I know that OsO4 is colorless, but Cr2O3 is actually a solid green from what I have seen. but I guess it could appear yellow-greenish.