Answer: The empirical formula for the given compound is 
Explanation : Given,
Mass of O = 0.370 g
Mass of N = 0.130 g
To formulate the empirical formula, we need to follow some steps:
Step 1: Converting the given masses into moles.
Moles of Oxygen = 
Moles of Nitrogen = 
Step 2: Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.00928 moles.
For Oxygen = 
For Nitrogen = 
Step 3: Taking the mole ratio as their subscripts.
The ratio of O : N = 2 : 1
Hence, the empirical formula for the given compound is 
Answer:
Coefficients
Explanation:
Chemical equations are first written as a skeleton equation, which includes how many atoms each element and compound has. Skeleton equations are not 'balanced' because the number of atoms of each element on the left side (reactants) is not equal to the right side (products).
To balance a chemical equation, you can write coefficients in front of single elements and compounds. The coefficient multiplies with each single element and with each element in the compound.
For example, in this skeleton equation:
H₂ + Cl₂ => HCl
Reactants: Products:
2 hydrogen 1 hydrogen
2 chlorine 1 chlorine
Write the coefficient 2 in the products.
H₂ + Cl₂ => 2HCl
Now both reactant and product sides have 2 chlorine and 2 hydrogen, so the equation is balanced.
Looking at a ph level color chart, it should be moving to more acidic if it’s positive
Relative formula mass C₅H₁₁ = 71
Now divide the molar mass by the RFM = 142.32 / 71 = 2
Now C₍₅ₓ₂₎H₍₁₁ₓ₂) = C₁₀H₂₂
Hope that helps
Answer:

Explanation:
Here in Calcium Chloride ionic bond is present in between calcium and chlorine atoms. As we know according to Octet rule calcium have two excess atoms and for matching nearest noble gas electronic configuration. It donate two electrons to gain more stability and form
, while chlorine is deficient from one electron to meet nearest noble gas electronic configuration therefore two chlorine atoms accept excess electron from calcium individually and form two
ions.

Hence aqueous solution of calcium chloride breaks the ionic bond pairing in one
and two
ions: 