Answer:
Here's what I get
Explanation:
1. Names
I. CH₃-CH₂-COOH = 49. propanoic acid
II. CH₃-CH₂-OH = 46. ethanol
III. CH₃-COO-CH₂-CH₂-CH₃ = 47. propyl ethanoate
IV. H-O-CH₂-CH₂-CH₃ = 48. propan-1-ol
V. H-COO-CH₃ = 51. methyl methanoate
VI. CH₃-COOH = 50. ethanoic acid
2. Precursors
52. methyl propionate ⇒ methanol + propanoic acid
53. ethyl methanoate ⇒ ethanol + methanoic acid
Answer: Theoretical Yield = 0.2952 g
Percentage Yield = 75.3%
Explanation:
Calculation of limiting reactant:
n-trans-cinnamic acid moles = (142mg/1000) / 148.16 = 9.584*10⁻⁴ mol
pyridium tribromide moles = (412mg/1000) / 319.82= 1.288*10⁻³ mol
- n-trans-cinnamic acid is the limiting reactant
The molar ratio according to the equation mentioned is equals to 1:1
The brominated product moles is also = 9.584*10⁻⁴ mol
Theoretical yield = (9.584*10⁻⁴ mol) * (Mr of brominated product)
= (9.584*10⁻⁴ mol) * (307.97) = 0.2952 g
Percentage Yield is : Actual Yield / Theoretical Yield = 0.2223/0.2952
= 75.3%
Answer:
The correct answer is: Dynamic equilibrium in a chemical reaction is the condition in which the rate of the forward reaction equals the rate of the reverse reaction.
Explanation:
Dynamic equilibrium is a chemical equilibrium between froward reaction and backward or reverse reaction where rate of reaction going forwards is equal to the rate of reaction going backward (reverse).
Some other properties of dynamic equilibrium are:
- Chemical equilibrium are attained is closed system.
- The macroscopic remains constant like: volume, pressure, energy etc.
- The concentration of the reactants and products remain constant.They are not always equal.
This problem is describing the state two gases have when separated and together as shown on the attached picture. First of all, diagram 1 shows how they are separated in two containers with apparently equal volumes, whereas diagram 2 shows the removal of the barrier so that they get mixed together.
In this case, we can analyze that each gas has its own pressure and due to the removal of the barrier, both pressure and volume undergo a change. Thus, we can infer that the final volume is doubled with respected to the initial one for each gas, causing the pressure of each gas to be halved and the total pressure the half of the added ones, in agreement to the Boyle's law (inversely proportional relationship between pressure and temperature).
Therefore, the correct choice is:
C. The partial pressure of each gas in the mixture is half its initial pressure; the final total pressure is half the sum of the initial pressures of the two gases.
Learn more: