Answer:- 3333 g of solution.
Some of the question part is missing here. It would be like, "Determine the mass in grams of each NaCl solution that contains 1.5 g of NaCl.
(i) 0.045% NaCl by mass
Solution:- 0.045% NaCl by mass means 0.045 g of NaCl are present in 100 g of solution. 1.5 g of NaCl would be present in how many grams of solution?
We could solve this using proportions...
(0.045/100) = (1.5/X)
0.045(X) = 1.5(100)
0.045X = 150
X = 150/0.045 = 3333
So, 1.5 g of NaCl is present in 3333 g of solution.
<span>C 13 has
Protons = 6
neutrons = 6
electrons = 13-6</span>
The important thing to note is the reason why electron react is due to the instability of the electrons. All elements wants to aim the electron configuration of the noble gases. This is the most stable form in which each of the orbitals are sufficiently filled. When it comes to bonding, the order of reactivity is: alkynes > alkenes > alkanes. Alkynes are compounds with triple bonds, alkenes with double bonds and alkanes with single bonds. The single bonds are called saturated hydrocarbons. This is because they have reached stability, so it is quite difficult to react this with reducing or oxidizing agents. Alkynes and alkenes are unsaturated hydrocarbons. They readily react with reducing and oxidizing agents so as to become saturated, as well. The underlying principle for this is that single bonds contain sigma bonds which is the head-on overlapping of electrons. These is the strongest type of covalent bond. Double and triple bonds contain pi bonds which is the side overlapping of electrons orbitals. Hence, these electrons would be easily separated making it more reactive especially during protonation.
Answer:
B: Increasing the volume inside the reaction chamber
Explanation:
An example of erosion is the Grand Canyon, which was worn away over time by the Colorado river.