Answer:
F. Universe
Explanation:
Universe and Galaxies are two different things.
Answer:
4.8 %
Explanation:
We are asked the concentration in % by mass, given the molarity of the solution and its density.
0.8 molar solution means that we have 0.80 moles of acetic acid in 1 liter of solution. If we convert the moles of acetic acid to grams, and the 1 liter solution to grams, since we are given the density of solution, we will have the values necessary to calculate the % by mass:
MW acetic acid = 60.0 g/mol
mass acetic acid (the solute) = 0.80 mol x 60 g / mol = 48.00 g
mass of solution = 1000 cm³ x 1.010 g/ cm³ (1l= 1000 cm³)
= 1010 g
% (by mass) = 48.00 g/ 1010 g x 100 = 4.8 %
Answer: orientation , energy , frequency
Explanation:
According to the collision theory , the number of collisions that take place per unit volume of the reaction mixture is called collision frequency. The effective collisions are ones which result into the formation of products.
Effective collisions depends on the following two factors:-
1. Orientation factor: The colliding molecules must have proper orientation at the time of collision to result into formation of products.
2. Energy factor: For collision to be effective, the colliding molecules must have energy more than a particular value called as threshold energy.
Answer: Hydrogen bonds
Explanation: Hydrogen bonds allow two molecules to link together temporarily. Water molecules are made up of two hydrogen atoms and one oxygen atom, held together by polar covalent bonds.
Answer:
Heating the system
Explanation:
According to the principle of Le Chatelier, for a system at equilibrium, a specific disturbance would make the equilibrium shift toward the direction which minimizes such a disturbance.
Since we wish to shift the equilibrium to the left, this means we wish to increase the concentration of products, as an excess in their concentration would make the products react and produce more reactants in order to lower the excess concentration of products.
Since heat is also a product, an increase in heat would shift the equilibrium toward the left, as this would consume the excess of heat by producing the reactants.