Answer:
Ionic Bonding: The formation of an Ionic bond is the result of the transfer of one or more electrons from a metal onto a non-metal.
Covalent Bonding: Bonding between non-metals consists of two electrons shared between two atoms.
Explanation:
A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds.
Here we have to get the spin of the other electron present in a orbital which already have an electron which has clockwise spin.
The electron will have anti-clockwise notation.
We know from the Pauli exclusion principle, no two electrons in an atom can have all the four quantum numbers i.e. principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s) same. The importance of the principle also restrict the possible number of electrons may be present in a particular orbital.
Let assume for an 1s orbital the possible values of four quantum numbers are n = 1, l = 0, m = 0 and s = 
.
The exclusion principle at once tells us that there may be only two unique sets of these quantum numbers:
1, 0, 0, +
and 1, 0, 0, -
.
Thus if one electron in an orbital has clockwise spin the other electron will must be have anti-clockwise spin.
The noble gases are relatively unreactive because they have a stable octet of valence electrons.
Thus, they do not tend to undergo reactions in which they will gain or lose valence electrons,
However, <em>only He, Ne, and Ar are inert</em>. Kr and Xe combine with other highly reactive elements to form stable compounds.