Closed system. If the system is not closed, matter or energy can escape from the system. an example of this is if you react magnesium and hydrochloric acid in a open system. The H₂ gas is going to escape making it look like some of the mass disappeared . in that same reaction some in an open system will also loose heat to the surrounding which will make it look like less heat was produced.
Isotopes are atoms of the same element that have different numbers of neutrons.
Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer
Answer:
%N = 25.94%
%O = 74.06%
Explanation:
Step 1: Calculate the mass of nitrogen in 1 mole of N₂O₅
We will multiply the molar mass of N by the number of N atoms in the formula of N₂O₅.
m(N): 2 × 14.01 g = 28.02 g
Step 2: Calculate the mass of oxygen in 1 mole of N₂O₅
We will multiply the molar mass of O by the number of O atoms in the formula of N₂O₅.
m(O): 5 × 16.00 g = 80.00 g
Step 3: Calculate the mass of 1 mole of N₂O₅
We will sum the masses of N and O.
m(N₂O₅) = m(N) + m(O) = 28.02 g + 80.00 g = 108.02 g
Step 4: Calculate the percent composition of N₂O₅
We will use the following expression.
%Element = m(Element)/m(Compound) × 100%
%N = m(N)/m(N₂O₅) × 100% = 28.02 g/108.02 g × 100% = 25.94%
%O = m(O)/m(N₂O₅) × 100% = 80.00 g/108.02 g × 100% = 74.06%
I believe the correct answer from the choices listed above is the fifth option. Of the following , the strong electrolyte would be NH4NO3. NH4NO3<span> is a salt and completely dissociates in aqueous solution. Hope this answers the question. Have a nice day.</span>