Answer:
A)
Step-by-step explanation:
The equation of a circle is where is the center and is the radius. If and , then:
Therefore, the equation of the circle is
Answer:
P(B|A)=0.25 , P(A|B) =0.5
Step-by-step explanation:
The question provides the following data:
P(A)= 0.8
P(B)= 0.4
P(A∩B) = 0.2
Since the question does not mention which of the conditional probabilities need to be found out, I will show the working to calculate both of them.
To calculate the probability that event B will occur given that A has already occurred (P(B|A) is read as the probability of event B given A) can be calculated as:
P(B|A) = P(A∩B)/P(A)
= (0.2) / (0.8)
P(B|A)=0.25
To calculate the probability that event A will occur given that B has already occurred (P(A|B) is read as the probability of event A given B) can be calculated as:
P(A|B) = P(A∩B)/P(B)
= (0.2)/(0.4)
P(A|B) =0.5
Answer: a) No Solution
b) Infinite Solutions (All Real Numbers)
<u>Step-by-step explanation:</u>
4(g + 8) = 7 + 4g
4g + 32 = 7 + 4g <em>distributed 4 into g + 8</em>
32 = 7 <em> subtracted 4g from both sides</em>
Since the statement is false because 32 ≠ 7, then there is NO SOLUTION
-4(-5h - 4) = 2(10h + 8)
20h + 16 = 20h + 16 <em>distributed</em>
16 = 16 <em>subtracted 20h from both sides</em>
Since the statement is true because 16 = 16, then there are INFINITE SOLUTIONS so x can be all real numbers.
Answer:
x = 4 and 3
Step-by-step explanation:
[7±√(-7)²-4(1)(12)]/2
x = 4, 3
Answer:
$ 5674.076
Step-by-step explanation:
The question is on compound interest
The formulae = A= P(1+ r/n) ^nt .......where P is the principal amount, r is the rate of interest in decimal, n is number of compoundings per year and t is the total number of years.
Given; P= $4,000.00 , r=12/100=0.12, n=2 and t=3
Substituting values in the equation A= P(1+ r/n) ^nt
A= 4000 ( 1+0.12/2)^2×3
A=4000(1.06)^6
A=$ 5674.08