A student can take three subjects in 40 ways.
<u>SOLUTION:</u>
Given that, there are 4 different math courses, 5 different science courses, and 2 different history courses.
A student must take one of each, how many different ways can this be done?
Now, number ways to take math course = 4
Number of ways to take science course = 5
Number of ways to take history course = 2
So, now, total possible ways = product of possible ways for each course = 4 x 5 x 2 = 40 ways.
Hence, a student can take three subjects in 40 ways.
Answer:
in the picture above.
Step-by-step explanation:
I hope that it's a correct answer.
Answer:
A. x + 5
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Simplify</u>
- Factor:

- Divide:

Answer:
12
Step-by-step explanation:
72/6 = 12
Or 72= h*6
Be sure to mark me brainliest!