Answer:
v = 2591.83 m/s
Explanation:
Given that,
The electric field is 1.27 kV/m and the magnetic field is 0.49 T. We need to find the electron's speed if the fields are perpendicular to each other. The magnetic force is balanced by the electric force such that,

So, the speed of the electron is 2591.83 m/s.
Answer:
Elevation =31.85[m]
Explanation:
We can solve this problem by using the principle of energy conservation. This consists of transforming kinetic energy into potential energy or vice versa. For this specific case is the transformation of kinetic energy to potential energy.
We need to first identify all the input data, and establish a condition or a point where the potential energy is zero.
The point where the ball is thrown shall be taken as a reference point of potential energy.
![E_{p} = E_{k} \\where:\\E_{p}= potential energy [J]\\ E_{k}= kinetic energy [J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20E_%7Bk%7D%20%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%3D%20potential%20energy%20%5BJ%5D%5C%5C%20E_%7Bk%7D%3D%20kinetic%20energy%20%5BJ%5D)
m = mass of the ball = 300 [gr] = 0.3 [kg]
v = initial velocity = 25 [m/s]
![E_{k}=\frac{1}{2} * m* v^{2} \\E_{k}= \frac{1}{2} * 0.3* (25)^{2} \\E_{k}= 93.75 [J]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20m%2A%20v%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A%200.3%2A%20%2825%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D%2093.75%20%5BJ%5D)
![93.75=m*g*h\\where:\\g = gravity = 9.81 [m/s^2]\\h = elevation [m]\\replacing\\h=\frac{E_{k}}{m*g} \\h=\frac{93.75}{.3*9.81} \\h=31.85[m]](https://tex.z-dn.net/?f=93.75%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cg%20%3D%20gravity%20%3D%209.81%20%5Bm%2Fs%5E2%5D%5C%5Ch%20%3D%20elevation%20%5Bm%5D%5C%5Creplacing%5C%5Ch%3D%5Cfrac%7BE_%7Bk%7D%7D%7Bm%2Ag%7D%20%5C%5Ch%3D%5Cfrac%7B93.75%7D%7B.3%2A9.81%7D%20%5C%5Ch%3D31.85%5Bm%5D)
Answer:
a = 8.951 m/s²
Explanation:
given,
angle = 0.52 radians
μ_s = 0.84
μ_k = 0.48
acceleration = ?
using
F + f = m a
mg sin θ + μk mg cos θ = m a
a = g sin θ + μk g cos θ
a = 9.8 x sin 0.52 + 0.48 x 9.8 x cos 0.52
a = 4.869 + 4.082
a = 8.951 m/s²
the magnitude of acceleration is a = 8.951 m/s²
Answer:
Voltmeter
Explanation:
A voltmeter is usually defined as an instrument that is commonly used to measure the electric potential difference acting between the two ends of a circuit. The unit of voltmeter is volts. Here, connections are made in parallel arrangement.
An ammeter is a device that is commonly used to measure the amount of flowing current within a circuit. The unit of current is in terms of amperes (A). Here, connections are made in series.
A voltmeter is usually comprised of high internal resistance in comparison to an ammeter because a high internal resistance results in the heating up of the battery and subsequent dropping its voltage and after the equipments are being cuts off, it leaves behind certain amount of energy.