C= chair cost
t= table cost
Create two equations with the given information. Solve for one variable in equation one. Substitute that answer in equation two. Then you can solve for the needed information.
3c+2t=$18
5c+6t=$48
3c+2t=18
Subtract 2c from both sides
3c=18-2t
Divide both sides by 3
c=(18-2t)/3
Substitute the value for c in equation two:
5c+6t=$48
5((18-2t)/3)+6t=48
(90-10t)/3+6t=48
Multiply everything by 3 to eliminate fraction
(3)((90-10t)/3)+(3)(6t)=(3)(48)
90-10t+18t=144
90+8t=144
Subtract 90 from both sides
8t=54
Divide both sides by 8
t=$6.75 cost for table
Substitute the t value to solve for c:
3c+2t=18
3c+2(6.75)=18
3c+13.50=18
3c=4.50
c=$1.50 chair cost
Check:
5c+6t=$48
5(1.50)+6(6.75)=48
7.50+40.50=48
48=48
Hope this helps! :) If it does, please mark as brainliest.
Answer:
y x (2x +y) x (7x +y)
Step-by-step explanation:
14x^2y + 9xy^2 +y^3
(Factor the expression)
y x (14x^2 +9xy +y^2)
(Rewrite the expression)
y x (14x^2 + 7xy +2xy +y^2)
(Factor the expression)
y x (7x x(2x +y) + y x (2x +y) )
(Factor the expression)
y x (2x +y) x (7x +y)
:))
cos θ =
, sin θ =
, cot θ = 4/7, sec θ =
, cosec θ = 
<h3>What are trigonometric ratios?</h3>
Trigonometric Ratios are values of all the trigonometric functions based on the value of the ratio of sides in a right-angled triangle.
Sin θ: Opposite Side to θ/Hypotenuse
Tan θ: Opposite Side/Adjacent Side & Sin θ/Cos
Cos θ: Adjacent Side to θ/Hypotenuse
Sec θ: Hypotenuse/Adjacent Side & 1/cos θ
Analysis:
tan θ = opposite/adjacent = 7/4
opposite = 7, adjacent = 4.
we now look for the hypotenuse of the right angled triangle
hypotenuse =
=
= 
sin θ = opposite/ hyp = 
Rationalize,
x
= 
But θ is in the third quadrant(180 - 270) and in the third quadrant only tan and cot are positive others are negative.
Therefore, sin θ = - 
cos θ = adj/hyp = 
By rationalizing and knowing that cos θ is negative, cos θ = -
cot θ = 1/tan θ = 1/7/4 = 4/7
sec θ = 1/cos θ = 1/
= -
cosec θ = 1/sin θ = 1/
= 
Learn more about trigonometric ratios: brainly.com/question/24349828
#SPJ1
One angle is inside a right triangle
Answer:
324
Step-by-step explanation:
Simplify it