The chemical behavior of an atoms is determine by the formation or destruction of chemical bonds. The chemical bonds are the result of the interaction of the electrons of the atoms. Chemical properties of the atoms are given by how attached are the shell electrons attached to the nucleus and how they interact with other atoms. Chemical changes are the result of exchange valence electrons of the atoms. So, <span>the answer is the atomic particle that determines the chemical behavior of an atom is the electron, because it is the particle that is active in chemical bonding.</span>
The number of particles in one mole is given be Avagadro's number <span>6.022×10^23
Multiply by number of moles.
3 ×10^-21 mol * 6.022 ×10^23 molecules/mol = </span><span>1,807 molecules
(rounded to nearest whole number)
</span>
Answer:
The limiting reactant is H₂
Explanation:
The reaction of hydrogen (H₂) and carbon monoxide (CO) to produce methanol (CH₃OH) is the following:
2H₂(g) + CO(g) → CH₃OH(g)
From the balanced chemical equation, we can see that 1 mol of CO reacts wIth 2 moles of H₂. So, the stoichiometric ratio is:
2 mol H₂/1 mol CO = 2.0
We have 500 mol of CO and 750 mol of H₂, so we calculate the ratio to establish a comparison:
750 mol H₂/500 mol CO = 1.5
Since 2.0 > 1.5, we have fewer moles of H₂ than are needed to completely react with 500 moles of CO. In fact, we need 1000 moles of H₂ and we have 750 moles. So, the limiting reactant is H₂.
Answer:
The one left in the hot sunlight.
Explanation:
The solubility of gases decreases when temperature increases. The gas in the soda pop (CO2) left in the sun will not stay dissolved as much as the on left in the refrigerator.
If ice is warmed and becomes a liquid, the process is endothermic.
The process requires heat in order to proceed. If ice stays in a very cold place, it will not melt unless it's heated. If ice is placed outside where it melts on its own, it gets the heat from the surroundings.