1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
3 years ago
5

What would be an example of a landform from magma?

Chemistry
2 answers:
mixas84 [53]3 years ago
7 0

The correct answer is (C) Lava plateau.


The explanation:


-Lava plateau is the landform form by volcanic activities , It's formed by highly fluid runny basaltic lava, within quit eruptions.


-It has a low viscosity so that it's a quiet eruption, which contains amount of trapped gases.


- It's flow and cover the original landscape forming lava plateau.

pshichka [43]3 years ago
4 0

The answer is C. lava plateau


You might be interested in
How many grams of KCO3 are needed to make 20 L of a 2.5 M solution?
PolarNik [594]

Answer:

0.25 L of a solution with a molarity of 6M has 6*0.25 = 1.5 moles of the solute. The molar mass of ammonium sulfate is 132.14 g/mole. The mass of 1.5 moles is 132.14*1.5 = 198.21 g. Therefore 198.12 g of ammonium sulfate are required to make 0.25 L of a solution with a concentration of 6M.

Explanation:

7 0
3 years ago
61.2 grams of hydrogen sulfide react with 64.0 grams of Sulfur dioxide and produce 62.2 grams of solid sulfur (S8). (a) What amo
ElenaW [278]
Yes Because he really needs it. The amount of sulfur would be
7 0
3 years ago
Read 2 more answers
Which of the below will effect colligative properties the most?<br> Be3N2<br> OK₂S<br> CO<br> Mgs
worty [1.4K]

Answer:

CO

Explanation:

6 0
3 years ago
NEED HELP ASAP WITH THESE QUESTIONS GIVING FAIR AMOUNT OF POINTS IF HELPED WITH ALL QUESTIONS Violet light has a wavelength of 4
scoray [572]

Answer:

a) 7.14e19 Hz

b) 2.298e-27 J

c) 2.793e-19 J; 7.117e9 nm

d) 7.5e14 Hz; 4.96e-19 J

e) 6.2947e-18 J; 31.6 nm

f) 2.21e-22 J

g) 7.1e-19 J; 1.1e15 Hz

h) 3.422e-19 J; 581 nm

i) 4.2e14 Hz

j) 1.92e8 m

k) 7.14e16 Hz; Ultraviolet

Explanation:

Frequency: ν       Wavelength: λ       Energy: E       Speed of light: C (3.00e8)       Planck's Constant: h (6.626e-34)

ν -> λ    λ = C/ν

λ -> ν    ν = C/λ

For either of these equations, wavelength must be converted to meters or nanometers, depending on the equation.

For ν -> λ, after doing the equation, convert the wavelength into nanometers by dividing by 1e-9.

For converting λ -> ν, convert the wavelength into meters by multiplying by 1e-9.

For energy: E = hν = hc/λ

Now that the setup is out of the way:

a) Violet light has a wavelength of 4.20 x 10-12 m. What is the frequency?

λ -> ν    ν = C/λ

\frac{3.00e8}{4.20e-12} = 7.14e19 Hz

b) A photon has a frequency (n) of 3.468 x 106 Hz. Calculate its energy

E = hν = hc/λ

(6.626e-34) (3.468e6) = 2.298e-27 J

c) Calculate the energy (E) and wavelength (l) of a photon of light with a frequency of 4.215 x 1014 Hz.

E = hν = hc/λ

(6.626e-34) (4.215e14) = 2.793e-19 J

ν -> λ    λ = C/ν

\frac{3.00e8}{4.215e14} = 7.117 m

\frac{7.117m}{1}*\frac{1nm}{1e-9m} = 7.117e9 nm

d) Calculate the frequency and the energy of blue light that has a wavelength of 400 nm  (h = 6.62 x 10-34 J-s).

λ -> ν    ν = C/λ

\frac{400 nm}{1} *\frac{1e-9m}{1nm} = 4e-7 m

\frac{3.00e8}{4e-7} = 7.5e14 Hz

E = hν = hc/λ

(6.626e-34) (7.5e14) = 4.96e-19 J

e) Calculate the wavelength and energy of light that has a frequency of 9.5 x 1015 Hz.

ν -> λ    λ = C/ν

\frac{3.00e8}{9.5e15} = 3.16e-8 m

\frac{3.16e-8m}{1}*\frac{1nm}{1e-9m} = 31.6 nm

E = hν = hc/λ

(6.626e-34) (9.5e15) = 6.2947e-18 J

f) A photon of light has a wavelength of 0.090 cm. Calculate its energy.

E = hν = hc/λ

Convert the wavelength from cm to meters:

\frac{0.090cm}{1} *\frac{1m}{100cm} = 9e-4 m

\frac{(6.626e-34)(3.00e8)}{9e-4} = 2.21e-22 J

g) Calculate the energy and frequency of red light having a wavelength of 2.80 x 10-5 cm.

E = hν = hc/λ

Convert the wavelength from cm to meters:

\frac{2.80e-5cm}{1} *\frac{1m}{100cm} = 2.8e-7 m

\frac{(6.626e-34)(3.00e8)}{2.8e-7} = 7.1e-19 J

λ -> ν    ν = C/λ

Convert the wavelength from cm to meters:

\frac{2.80e-5cm}{1} *\frac{1m}{100cm} = 2.8e-7 m

\frac{3.00e8}{2.8e-7} = 1.1e15 Hz

h) Calculate the energy (E) and wavelength (l) of a photon of light with a frequency of 5.165 x 1014 Hz.

E = hν = hc/λ

(6.626e-34) (5.165e14) = 3.422e-19 J

ν -> λ    λ = C/ν

\frac{3.00e8}{5.165e14} = 5.81e-7 m

\frac{5.81e-7m}{1}*\frac{1nm}{1e-9m} = 581 nm

i) The wavelength of green light from a traffic signal is centered at 7.20 x 10-5 cm. Calculate the frequency.

λ -> ν    ν = C/λ

Convert the wavelength from cm to meters:

\frac{7.20e-5 cm}{1} *\frac{1m}{100cm} = 7.2e-7 m

\frac{3.00e8}{7.2e-7} = 4.2e14 Hz

j) If it takes 1.56 seconds for radio waves (which travel at the speed of light) to reach the moon from Earth, how far away is the moon?

  All we want to do here is to convert frequency (speed) to wavelength (distance). This problem requires a bit of thought, but it isn't bad once you realize that frquency is speed and wavelength is distance. It becomes just like the other problems after that. Also, I'll leave this distance in meters, but I think you can figure out how to convert it if it wants it in another unit.

  One second is equal to 1 Hertz, so our frequency is 1.56 Hz.

ν -> λ    λ = C/ν

\frac{3.00e8}{1.56} = 1.92e8 m

  The actual distance from the earth to the moon via google is 3.84e7, but sometimes problems like this will mess with the numbers to make sure that you didn't just look up the answer. I'm still pretty sure that this is right, however.

k) Calculate the frequency of light that has a wavelength of 4.20 x 10-9m. Identify the type of electromagnetic radiation.

First, we convert wavelength to frequency, as normal:

λ -> ν    ν = C/λ

\frac{3.00e8}{4.20e-9} = 7.14e16 Hz

Then we identify the electromagnetic wave type. You can look up a conversion chart for these on google, but since our frequency is in the e15 - e17 range, this light is considered ultraviolet.

5 0
4 years ago
How does molecular size affect solubility
VashaNatasha [74]

the larger the molecules of the solute are, the larger is their molecular weight and their size.

4 0
4 years ago
Other questions:
  • The ksp of pbbr2 is 6.60× 10–6. what is the molar solubility of pbbr2 in 0.500 m kbr solution
    5·2 answers
  • How many watts are required to power a guitar amplifier that operates on 220 volts and 22 amps?
    12·1 answer
  • QUESTION 57
    10·2 answers
  • The ""size"" of an atom is sometimes considered to be measured by the radius of the sphere that contains 90% of the charge densi
    14·1 answer
  • How to distinguish between polar and non-polar molecules/compound? For instance, one that you have not studied before but have t
    11·1 answer
  • Conversion from cm3 to in3? how do i convert 39.5 cm3 to in 3?? help; how do i convert 39.5 cm3 to in3?
    12·1 answer
  • The combustion of ethane (C2H6) produces carbon dioxide and steam. 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(g) How many moles of CO2 are pro
    9·1 answer
  • Calcium + magnesium sulfide
    9·1 answer
  • Daje 25pkt bo tylko tyle mam :(( pomoże ktoś?
    5·1 answer
  • 4 b + 3 o2 → 2 b2o3 if 8 moles of b and 4 moles of o2 are allowed to react, how many moles of b2o3 can be formed?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!