Answer:a. Magnetic dipole moment is 0.3412Am²
b. Torque is zero(0)N.m
Explanation: The magnetic dipole moment U is given as the product of the number of turns n times the current I times the area A
That is,
U = n*I*A
But Area A is given as pi*radius² since it is a circular coil
Radius given is 5cm converting to meter we divide by 100 so we have our radius to be 0.05m. So area A is
A = 3.142*(0.05)² =7.86*EXP {-3} m²
Current I is 2 A
Number of turns is 20
So magnetic dipole moment U is
U = 20*2*7.86*EXP {-3}=0.3142A.m²
b. Torque is given as the cross product of the magnetic field B and magnetic dipole moment U
Torque = B x U =B*U*Sine(theta)
But since the magnetic field is directed parallel to the plane of the coil from the question, it means that the angle between them is zero and sine zero is equals 0(zero) if you substitute that into the formula for torque you will find out that your torque would equals zero(0)N.m
they are called "cells"
hope this is the answer is what your looking for.
Scattering occurs when light changes direction after colliding with particles of matter.
Answer:
The answer cannot be determined.
Explanation:
The energy of the diver when he hits the pool will be equal to its potential energy
, and for the temperature of the pool to rise up, this energy has to be converted into the heat energy of the pool.
The change in temperature
then will be

Where m is the mass of water in the pool, c is the specific heat capacity of water, and
is the added heat which in this case is the energy of the diver.
Since we do not know the mass of the water in the pool, we cannot make this calculation.
Assuming you're working in a 3D cartesian coordinate system, i.e. each point in space has an x, y, and z coordinate, you add up the forces' x/y/z components to find the resultant force.