I am sure it is frequency
Answer:
Explanation:
Here image distance is fixed .
In the first case if v be image distance
1 / v - 1 / -25 = 1 / .05
1 / v = 1 / .05 - 1 / 25
= 20 - .04 = 19.96
v = .0501 m = 5.01 cm
In the second case
u = 4 ,
1 / v - 1 / - 4 = 1 / .05
1 / v = 20 - 1 / 4 = 19.75
v = .0506 = 5.06 cm
So lens must be moved forward by 5.06 - 5.01 = .05 cm ( away from film )
Answer:
Explanation:
We can use the conservation of the angular momentum.


Now the Inertia is I(professor_stool) plus mR², that is the momentum inertia of a hoop about central axis.
So we will have:

Now, we just need to solve it for ω.

I hope it helps you!
As this happens over twelve seconds, you would take the total difference in velocities and divide it by twelve to find the change per second
44.0 m/s - 2.0 m/s = 42.0 m/s
42.0 m/s / 12 s = 3.5 m/s2
the acceleration of the rock would be 3.5 m/s2