Answer:
The magnitude of the electric field at a point equidistant from the lines is 
Explanation:
Given that,
Positive charge = 24.00 μC/m
Distance = 4.10 m
We need to calculate the angle
Using formula of angle



We need to calculate the magnitude of the electric field at a point equidistant from the lines
Using formula of electric field

Put the value into the formula



Hence, The magnitude of the electric field at a point equidistant from the lines is 
Answer: F = ma,
Explanation:
the most famous equation in physics, establishing an equivalence between energy and mass. But is this the most important equation in physics? Knowledgeable scientists will tell you no. The most important equation in physics is F = ma, also known as Newton's second law of mechanics.
Answer:
32 C > 32 F > 32 K
Explanation:
32 F, 32 C, 32 K
Let T1 = 32 F
T2 = 32 C
T3 = 32 K
Convert all the temperatures in degree C
The relation between F and C is given by
(F - 32) / 9 = C / 100
so, (32 - 32) / 9 = C / 100
C = 0
So, T1 = 32 F = 0 C
The relation between c and K is given by
C = K - 273 = 32 - 273 = - 241
So, T3 = 32 K = - 241 C
So, T 1 = 0 C, T2 = 32 c, T3 = - 241 C
Thus, T2 > T1 > T3
32C > 32 F > 32 K
Answer:
kinetic energy at first
Explanation:
kinetic turns to potential as it gains height
The work done will be equal to the potential energy of the piano at the final position
P.E=m.g.h
.consider the plank the hypotenuse of the right triangle formed with the ground
.let x be the angle with the ground=31.6°
.h be the side opposite to the angle x (h is the final height of the piano)
.let L be the length of the plank
sinx=opposite side / hypotenuse
= h/L
then h=L.sinx=3.49×sin31.6°=0.638m
weight w=m.g
m=w/g=3858/10=385.8kg
Consider Gravity g=10m/s2
then P.E.=m.g.h=385.8kg×10×0.638=2461.404J
then Work W=P.E.=2451.404J