To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are. We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.
You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that 1/4 of the wave passes by in 1 second.
There's your frequency . . . 1/4 per second, or 0.25 Hz.
Answer:
$893
Explanation: the complete question should be
The clothes washer in your house consumes 470 kWh of energy per year. Price of the washer is $360 and the lifetime of the washer is 10 yrs. Energy price in your city is 9 cents per kWh. What is the lifecycle cost of the clothes washer? (assume a maintenance cost of $11 per year)
SOLUTION
Given:
The clothes washe power consumption (PC) is 470 kWh
Price of the washer (P) is $360
lifetime of the washer (L) is 10 yrs
Energy price in the city (E) is 9 cents per kWh (Covert to $ by dividing 100)
maintenance cost (M) is $11 per year
Lifecycle cost = P + (PC × L × E) +M + L
Lifecycle cost = $360 + (470kWh × 10years × 9cents/100) + ($11 × 10years)
=$893
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:

Yes it does, uh huh. It slows down as it rolls. That's a fact.
In order for the ball to roll forward, it has to push grass out of the way. That takes energy. To bend each blade of grass out of its way, the ball has to use a tiny bit of the kinetic energy that it has, so it gradually runs out of kinetic energy. When its kinetic energy is all gone, it stops moving.