Answer:
I was also going to ask same question edited:ok i found its true
Answer:
True
Explanation:
The angular momentum around the center of the planet and the total mechanical energy will be preserved irrespective of whether the object moves from large R to small R. But on the other hand the kinetic energy of the planet will not be conserved because it can change from kinetic energy to potential energy.
Therefore the given statement is True.
Here is the formula that you need to know for this problem:
Number of proton (atomic number) + Number of neutrons = Mass number
So,
45 + Number of Neutrons = 161
Number of neutrons = 161 - 45
Number of Neutrons = 116
A. The horizontal velocity is
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π
b. vy = 4π cos (4πt + π/2)
vy = 0
c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]
d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]
e. t = -1.0
f. t = -0.35
g. Solve for t
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax
h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax
i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)
h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt
k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
Argon
Carbon Dioxide
Water Vapor (H2O)
Ozone
Methane
Nitrous Oxide
etc