Answer : The molecular weight of a gas is, 128.9 g/mole
Explanation : Given,
Density of a gas = 5.75 g/L
First we have to calculate the moles of gas.
At STP,
As, 22.4 liter volume of gas present in 1 mole of gas
So, 1 liter volume of gas present in
mole of gas
Now we have to calculate the molecular weight of a gas.
Formula used :

Now put all the given values in this formula, we get the molecular weight of a gas.


Therefore, the molecular weight of a gas is, 128.9 g/mole
Heat required : 4.8 kJ
<h3>Further explanation
</h3>
The heat to change the phase can be formulated :
Q = mLf (melting/freezing)
Q = mLv (vaporization/condensation)
Lf=latent heat of fusion
Lv=latent heat of vaporization
The heat needed to raise the temperature
Q = m . c . Δt
1. heat to raise temperature from -20 °C to 0 °C

2. phase change(ice to water)

3. heat to raise temperature from 0 °C to 25 °C


<span>Not to be confused with tetration.
This article is about volumetric titration. For other uses, see Titration (disambiguation).
Acid–base titration is a quantitative analysis of concentration of an unknown acid or base solution.
Titration, also known as titrimetry,[1] is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of an identified analyte. Since volume measurements play a key role in titration, it is also known as volumetric analysis. A reagent, called the titrant or titrator[2] is prepared as a standard solution. A known concentration and volume of titrant reacts with a solution of analyte or titrand[3] to determine concentration. The volume of titrant reacted is called titration volume</span>
Answer:
#2 is melting ice and #3 is radiation
Explanation:
hope this helped