Its been awhile since I've dabbled in chemistry, but i do know that A isnt the answer because the question says solution, not mixture. This looks somewhat like a trick question, it says individual components, so the answer would be C. This is because the individual components do react to form a compound. B and D would be true if it didnt say individual components, so the question is basically focusing on only one ingredient, not the whole solution. Answer: C
Answer:
1) Since you have not provided the equations to select the right one, I am going to explain you the relevant facts that are used to solve this question.
2) The transuranium elements are the chemiical elements with atomic number greater than that of the uranium.
The atomic number of uranium is 92. So, the transuranium elements are the elements with atomic number 93 or greater.
This are some of the transuranium elements:
Neptunio - 93
Plutonium - 94
Americium - 95
Curium - 96
Berkelium - 97
Californium - 98
Einstenium - 99
And so all the known elements (the last one is the 118).
3) In a nuclear reaction the total mass number ( shown as superscript to the left of the symbol) and total atomic number (shown as subscript to the left of the symbol) are conserved.
4) Beta decay is the release of a beta particle, which is an electron (considered massles and with charge - 1). So, the beta decay is represented with the symbol:
0
β, which means 0 mass and charge - 1.
-1
5) This is, then, an example of a β decay equation for one transuranium element:
239 239 0
Np → Pu + β
93 94 -1
As you see 239 = 239 + 0 and 93 = 94 - 1, showing that the total mass number ( shown as superscript to the left of the symbol) and the total atomic number (shown as subscript to the left of the symbol) are conserved.
Explanation:
Hey there!
Great question=)
Answer:Fog, these are clouds that form near the ground.
I hope this helps;)
Answer:
was difficult to place isotopes of elements as they have the same chemical properties but different atomic masses. It was not possible to predict how many elements could be discovered between two heavy elements as the rise in atomic mass is not uniform.
In gas the speed of sound is 343.2 meters per second, in liquid the speed of sound is 1,484 meters per second and in solids like steel it travels 5,120 meters per second.