Answer:
2.7 × 10⁻⁴ bar
Explanation:
Let's consider the following reaction at equilibrium.
SbCl₅(g) ⇄ SbCl₃(g) + Cl₂(g)
The pressure equilibrium constant (Kp) is 3.5 × 10⁻⁴. We can use these data and the partial pressures at equilibrium of SbCl₅ and SbCl₃, to find the partial pressure at equilibrium of Cl₂.
Kp = pSbCl₃ × pCl₂ / pSbCl₅
pCl₂ = Kp × pSbCl₅ / pSbCl₃
pCl₂ = 3.5 × 10⁻⁴ × 0.17 / 0.22
pCl₂ = 2.7 × 10⁻⁴ bar
For an object to sink in something, it's density has to be higher than the object it is in, so if it sinks in water the number has be higher than 1
And to float, and objects density has to be lower than that of the substance it is put in, so it has to be lower than 1.26
So between 1 and 1.26
The experimental density of CO2 at STP is 0.10/0.056=1.78 g/L. The percent error equals to (1.96-1.78)/1.96*100%=9.18%. So the answer is 9.18%.
An ordinary atom is balanced for instance, lithium has 3 protons and 3 electrons the positively charged proton cancels the negatively charged electron.
THINK math plus 3 and negative 3 = 0 neutral