✧・゚: *✧・゚:* *:・゚✧*:・゚✧
Hello!
✧・゚: *✧・゚:* *:・゚✧*:・゚✧
❖ In order to keep the bench from conducting heat, Shane could build it out of wood. Wood doesn't conduct heat so this would work best for Shane.
~ ʜᴏᴘᴇ ᴛʜɪꜱ ʜᴇʟᴘꜱ! :) ♡
~ ᴄʟᴏᴜᴛᴀɴꜱᴡᴇʀꜱ
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the volume of the new solution by using the general formula of dilution:

In such a way, we solve for the final volume, V2, to obtain:

Regards!
The approximate alcohol content is 210 ml.
Explanation:
It can be deduced from the question that each bottle is of 1000ml or 1 litre.
The first bottle is one half full means it has 500 ml of solution and it has 20% alcohol in it. So volume of alcohol in the solution is
20/100*500
=100 ml
The first bottle is one fifth full, so the volume of mixture is 1/5th of 1000ml
so it is 200ml having 30% alcohol
30/100*200
= 60 ml
The third bottle is one tenth full so its volume is 1/10*1000
100 ml. having 50% of alcohol
50/100*100
50 ml.
The alcohol content obtained from all these 3 litres is:
100+60+50
= 210 ml of alchohol is obtained from 800 ml of mixture.
Electron affinity is defined as the change in energy (in kJ/mole) of a neutral atom (in the gaseous phase) when an electron is added to the atom to form a negative ion. In other words, the neutral atom's likelihood of gaining an electron.
Electron Affinity of Lithium is 59.6 kJ/mol.
Electron Affinity of Caesium is 45.5 kJ/mol.
Electron Affinity of Lithium is 59.6 kJ/mol. Electronegativity of Lithium is 0.98. ... Electron affinities are more difficult to measure than ionization energies. An atom of Lithium in the gas phase, for example, gives off energy when it gains an electron to form an ion of Lithium.
Trends
The ionization energy of the elements within a period generally increases from left to right. This is due to valence shell stability.
The ionization energy of the elements within a group generally decreases from top to bottom. This is due to electron shielding.
The noble gases possess very high ionisation energies because of their full valence shells as indicated in the graph. Note that helium has the highest ionization energy of all the elements.
0.72 mole of oxygen would produce 320.4 kJ of heat.
<u>Explanation:</u>
CH₄ (g) + 2O₂ (g) → CO₂ (g) + 2H₂O (ℓ) + 890kJ
According to the equation,
2 moles of O₂ produces 890 kJ of heat
So, 0.72 moles of O₂ will produce:

Therefore, 0.72 mole of oxygen would produce 320.4 kJ of heat.