Answer
given.
Mass of big fish = 15 Kg
speed of big fish = 1.10 m/s
mass of the small fish = 4.50 Kg
speed of the fish after eating small fish =?
a) using conservation of momentum
m₁v₁ + m₂v₂ = (m₁+m₂) V
15 x 1.10 + 4.50 x 0 = (15 + 4.5)V
16.5 = 19.5 V
V = 0.846 m/s
b) Kinetic energy before collision
KE₁ = 9.075 J
Kinetic energy after collision
KE₂ = 6.98 J
Change in KE = 6.98 - 9.075 = -2.096 J
hence,
mechanical energy was dissipated during this meal = -2.096 J
Answer:
the temperature would Increase and pressure would increase
Explanation:
This would occur because the temperature would move to the liquid through conduction and the pressure would increase because the heat would cause more and more pressure
So, there should be two forces acting on the refrigerator: the applied force and the friction force.
The question mentioned that the friction force was set to zero, so the only effective force now would be the applied force.
We have an applied force of 400 N to the right, this means that:
<span>The magnitude of the net force is 400, directed to the right.</span>
<span> gravitational force varies based on 1/r^2
when you're double the distance =10,000 to 20,000, the force is 4 times smaller so on and so forth.
</span><span>As force is proportional to 1 / {distance squared}, the force will be 1 / 2^2 (i.e. 1/4) of the force at the reference distance (i.e. 1/4 * 600 = 150 lb)
</span>hope this helps
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter