1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
3 years ago
11

Can yo solve this ones, please? in adittion, can you put answers and the process. The topic are area down the curve

Mathematics
1 answer:
IgorC [24]3 years ago
7 0

1) The <em>net</em> area between the two functions is 2.

2) The <em>net</em> area between the two functions is 4/3.

3) The <em>net</em> area between the two functions is 17/6.

4) The <em>net</em> area between the two functions is approximately 1.218.

5) The <em>net</em> area between the two functions is 1/2.

<h3>How to determine the area between two functions by definite integrals</h3>

The area between the two curves is determined by <em>definite</em> integrals for a interval between two values of <em>x</em>. A general formula for the <em>definite</em> integral is presented below:

A = \int\limits^{b}_{a} {[f(x) - g(x)]} \, dx   (1)

Where:

  • <em>a</em> - Lower limit
  • <em>b</em> - Upper limit
  • <em>f(x)</em> - "Upper" function
  • <em>g(x)</em> - "Lower" function

Now we proceed to solve each integral:

<h3>Case I - f(x) = \sqrt{x} and g(x) = x^{2}</h3>

The <em>lower</em> and <em>upper</em> limits between the two functions are 0 and 1, respectively. The definite integral is described below:

A = \int\limits^1_0 {x^{0.5}} \, dx - \int\limits^1_0 {x^{2}} \, dx

A = 2\cdot (1^{1.5}-0^{1.5})-\frac{1}{3}\cdot (1^{3}-0^{3})

A = 2

The <em>net</em> area between the two functions is 2. \blacksquare

<h3>Case II - f(x) = -4\cdot x and g(x) = x^{2}+3</h3>

The lower and upper limits between the two functions are -3 and -1, respectively. The definite integral is described below:

A = - 4 \int\limits^{-1}_{-3} {x} \, dx - \int\limits^{-1}_{-3} {x^{2}} \, dx - 3 \int\limits^{-1}_{-3}\, dx

A = -2\cdot [(-1)^{2}-(-3)^{2}]-\frac{1}{3}\cdot [(-1)^{3}-(-3)^{3}] -3\cdot [(-1)-(-3)]

A = \frac{4}{3}

The <em>net</em> area between the two functions is 4/3. \blacksquare

<h3>Case III - f(x) = x^{2}+2 and g(x) = -x</h3>

The definite integral is described below:

A = \int\limits^{1}_{0} {x^{2}} \, dx + 2\int\limits^{1}_{0}\, dx + \int\limits^{1}_{0} {x} \, dx

A = \frac{1}{3}\cdot (1^{3}-0^{3}) + 2\cdot (1-0) +\frac{1}{2}\cdot (1^{2}-0^{2})

A = \frac{17}{6}

The <em>net</em> area between the two functions is 17/6. \blacksquare

<h3>Case IV - f(x) = e^{-x} and g(x) = -x</h3>

The definite integral is described below:

A = \int\limits^{0}_{-1} {e^{-x}} \, dx+ \int\limits^{0}_{-1} {x} \, dx

A = -(e^{0}-e^{1}) + \frac{1}{2}\cdot [0^{2}-(-1)^{2}]

A \approx 1.218

The <em>net</em> area between the two functions is approximately 1.218. \blacksquare

<h3>Case V - f(x) = \sin 2x and g(x) = \sin x</h3>

This case requires a combination of definite integrals, as <em>f(x)</em> may be higher that <em>g(x)</em> in some subintervals. The combination of definite integrals is:

A = \int\limits^{\frac{\pi}{3} }_0 {\sin 2x} \, dx - \int\limits^{\frac{\pi}{3} }_{0} {\sin x} \, dx + \int\limits^{\frac{\pi}{2} }_{\frac{\pi}{3} } {\sin x} \, dx  -\int\limits^{\frac{\pi}{2} }_{\frac{\pi}{3} } {\sin 2x} \, dx

A = -\frac{1}{2}\cdot (\cos \frac{2\pi}{3}-\cos 0)+(\cos \frac{\pi}{3}-\cos 0 ) -(\cos \frac{\pi}{2}-\cos \frac{\pi}{3}  )+\frac{1}{2}\cdot (\cos \pi-\cos \frac{2\pi}{3} )

A = \frac{1}{2}

The <em>net</em> area between the two functions is 1/2. \blacksquare

To learn more on definite integrals, we kindly invite to check this verified question: brainly.com/question/14279102

You might be interested in
Pleaseeeeeeee help me
lorasvet [3.4K]

Answer:

by my best guess, x = -5 (negative five)

Step-by-step explanation:

3 0
3 years ago
Simplify the expression using the distributive property. –4(–3x + 11) 1. Distribute the –4 through the parentheses: -4(–3x) + (-
gayaneshka [121]

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

5 0
3 years ago
Calculate the standard deviation. Variance = 107.76. Mean = 34.2
Llana [10]

Answer:

The standard deviation is 10.38

Step-by-step explanation:

Given;

Variance, v = 107.76

mean, x = 34.2

The standard deviation is given by;

standard deviation = √variance

standard deviation = √107.76

standard deviation =  10.381

standard deviation = 10.38 (two decimal places)

Therefore, the standard deviation is 10.38

8 0
3 years ago
Fran swims at a speed of 2.8 mph in still water. The Lazy River flows at a speed of 0.8 mph. How long will it take Fran to swim
Elis [28]

Answer:

1.49 hrs or 1 hr and 30 minutes approximately

Step-by-step explanation:

if fran go 2.8m up then the river flow at a rate of 0.8m; the since we are taking the speed of fran and river to be constant. the ratio between their speed will always remain constant. that is if 0.8/2.8 = 0.286≈ this will be always constant.

so if he go up 4m then the horizontal length has to be 1.143 because 1.143/4 = 0.286.

now we find the distance between frans initial positon and final position. to find it we use pythagoras theorem.

\sqrt{(4^2 + 1.143^2)} =4.160 miles

to find the time divide distance traveled by speed;

4.160/2.8 = 1.49 hrs

7 0
3 years ago
7. Five swimmers entered a competition. Four of the swimmers had their turns. Their scores are 9.8, 9.75, 9.79 and 9.81 seconds
arsen [322]

Answer:

We must order these decimals from least to greatest. Then we must determine how the least compares with the winning score.

9.80 -> 3

9.75 -> 1

9.79 -> 2

9.81 -> 4

The least decimal is 9.75. Now we must determine how 9.75 compare with the winning score.

The last swimmer must get a score less than 9.75 seconds in order to win.

5 0
2 years ago
Other questions:
  • Jaden and cadence share a reward of $140 in a ratio of 2/5. what fraction of the total reward does Jaden get? how do you know?
    9·2 answers
  • On a stringed instrument, the length of a string varies inversely as the frequency of its vibrations. An 11-inch string on a vio
    9·1 answer
  • (15) The ratio of boys to girls at the school is 3:5. If there are 160 students at 1 point the school, how many of them are girl
    5·1 answer
  • Solve for x. State any restrictions on the variables. <br> ax + bx - 1 = 8
    15·1 answer
  • Helpp pleaseee! <br> I need to pass
    9·1 answer
  • An organism measures 2.9 x 10-5 centimeters in diameter. What is this number in standard notation?
    10·2 answers
  • Notice that the rule for each animal involves counting the number of chirps in different time intervals. For the Brookdale crick
    11·1 answer
  • Which statement describes the graph?
    5·1 answer
  • Help me out, please-
    10·1 answer
  • Rewrite each fraction with a denominator of 121212.<br> \dfrac{3}{4} =
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!