Answer: its x = 3
Step-by-step explanation:
The maximum or minimum of a quadratic function occurs at
x
=
−
b
2
a
. If
a
is negative, the maximum value of the function is
f
(
−
b
2
a
)
. If
a
is positive, the minimum value of the function is
f
(
−
b
2
a
)
.
f
min
x
=
a
x
2
+
b
x
+
c
occurs at
x
=
−
b
2
a
Find the value of
x
equal to
−
b
2
a
.
x
=
−
b
2
a
Substitute in the values of
a
and
b
.
x
=
−
−
12
2
(
2
)
Remove parentheses.
x
=
−
−
12
2
(
2
)
Simplify
−
−
12
2
(
2
)
.
Tap for more steps...
x
=
3
The maximum or minimum of a quadratic function occurs at
x
=
−
b
2
a
. If
a
is negative, the maximum value of the function is
f
(
−
b
2
a
)
. If
a
is positive, the minimum value of the function is
f
(
−
b
2
a
)
.
f
min
x
=
a
x
2
+
b
x
+
c
occurs at
x
=
−
b
2
a
Find the value of
x
equal to
−
b
2
a
.
x
=
−
b
2
a
Substitute in the values of
a
and
b
.
x
=
−
−
12
2
(
2
)
Remove parentheses.
x
=
−
−
12
2
(
2
)
Simplify
−
−
12
2
(
2
)
.
Tap for more steps...
x
=
3
Answer:
The vertices are (-16,-5) and (14,-5)
The foci are (-26,-5) and (24,-5)
Please, see the attached file.
Thanks.
200% bc it went up 2x as much as it cost before
Answer:
![\displaystyle 10 = ax + bx \rightarrow x = \frac{10}{a + b}](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010%20%3D%20ax%20%2B%20bx%20%5Crightarrow%20x%20%3D%20%5Cfrac%7B10%7D%7Ba%20%2B%20b%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
![\displaystyle 10 = ax + bx](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010%20%3D%20ax%20%2B%20bx)
<u>Step 2: Solve for </u><em><u>x</u></em>
- Factor:
![\displaystyle 10 = ax + bx \rightarrow 10 = x(a + b)](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010%20%3D%20ax%20%2B%20bx%20%5Crightarrow%2010%20%3D%20x%28a%20%2B%20b%29)
- [Division Property of Equality] Divide a + b on both sides:
![\displaystyle 10 = ax + bx \rightarrow x = \frac{10}{a + b}](https://tex.z-dn.net/?f=%5Cdisplaystyle%2010%20%3D%20ax%20%2B%20bx%20%5Crightarrow%20x%20%3D%20%5Cfrac%7B10%7D%7Ba%20%2B%20b%7D)