Answer:
The temperature change per compression stroke is 32.48°.
Explanation:
Given that,
Angular frequency = 150 rpm
Stroke = 2.00 mol
Initial temperature = 390 K
Supplied power = -7.9 kW
Rate of heat = -1.1 kW
We need to calculate the time for compressor
Using formula of compression



Put the value into the formula


We need to calculate the rate of internal energy
Using first law of thermodynamics


Put the value into the formula


We need to calculate the temperature change per compression stroke
Using formula of rate of internal energy


Put the value into the formula


Hence, The temperature change per compression stroke is 32.48°.
U = I × R = 20A × 12 Ohm =240V
Answer:
the weight of the object decreases when it is taken from the Earth to the Moon
Explanation:
The weight of an object is defined as the product of the mass of the object with the acceleration due to gravity of the Planet.

where,
W = weight of the object
m = mass of the object
g = acceleration due to gravity on the planet
The mass of an object remains constant everywhere in the universe. Therefore, the weight is directly proportional to the value of acceleration due to gravity.
The value of acceleration due to gravity on the Moon is lesser than its value on the Earth.
<u>Hence, the weight of the object decreases when it is taken from the Earth to the Moon </u>
Answer:
77.88 lbm/ft³
Explanation:
Given,
Specific gravity, SG = 1.25
Density of water, ρ = 62.30 lbm/ft³
density of the fluid =
= S.G x ρ_{water}
= 62.30 x 1.25
= 77.88 lbm/ft³
Density of the fluid is equal to 77.88 lbm/ft³
A. Light travels in a straight line.
<u>Expliantion: study island</u>