Answer:
A. 0.289g/mL
Explanation:
Using the equation for density which is d = m/v or density = mass/volume, we input 1.3g/4.5mL and get 0.289g/mL.
The speed of sound at T=25°C is Vs=346 m/s. So the sound has to reach the cliff and return back to you so the path it needs to travel is s=2*440 m = 880 m.
Since the speed of sound is constant s=Vs*t, and t= s/Vs=880/346=2.54335 s. You will hear the echo after t=2.54335 s after you shouted.
The distance is 97720.5 m
From the question, we have
P = 0.06 W × 2 = 0.12 W
d = ?
Sound intensity, I = P/4πd²
I = 10⁻¹² W/m²
10⁻¹² = 0.12/4πd²
d = 97720.5 m
The distance is 97720.5 m
Sound intensity :
The power carried by sound waves per unit area in the direction perpendicular to that region is known as sound intensity or acoustic intensity. The watt per square meter (W/m2) is the SI unit of intensity, which also covers sound intensity. Sound intensity is a measure of how quickly energy moves across a given space. The unit area in the SI measurement system is 1 m2. So Watts per square meter are used to measure sound intensity. As there will be energy flow in certain directions but not in others, sound intensity also provides a measure of direction.
To learn more about Sound intensity visit: brainly.com/question/12899113
#SPJ4
More force is needed for more mass. Therefore, if the mass is greater and the force is not enough then the object will less likely accelerate