Answer:
See below for answers and explanations
Step-by-step explanation:
<u>Problem 1</u>
Recall that the projection of a vector
onto
is
.
Identify the vectors:
![u=\langle-10,-7\rangle](https://tex.z-dn.net/?f=u%3D%5Clangle-10%2C-7%5Crangle)
![v=\langle-8,4\rangle](https://tex.z-dn.net/?f=v%3D%5Clangle-8%2C4%5Crangle)
Compute the dot product:
![u\cdot v=(-10*-8)+(-7*4)=80+(-28)=52](https://tex.z-dn.net/?f=u%5Ccdot%20v%3D%28-10%2A-8%29%2B%28-7%2A4%29%3D80%2B%28-28%29%3D52)
Find the square of the magnitude of vector v:
![||v||^2=\sqrt{(-8)^2+(4)^2}^2=64+16=80](https://tex.z-dn.net/?f=%7C%7Cv%7C%7C%5E2%3D%5Csqrt%7B%28-8%29%5E2%2B%284%29%5E2%7D%5E2%3D64%2B16%3D80)
Find the projection of vector u onto v:
![\displaystyle proj_vu=\biggr(\frac{u\cdot v}{||v||^2}\biggr)v\\\\proj_vu=\biggr(\frac{52}{80}\biggr)\langle-8,4\rangle\\\\proj_vu=\biggr\langle\frac{-416}{80} ,\frac{208}{80}\biggr\rangle\\\\proj_vu=\biggr\langle\frac{-26}{5} ,\frac{13}{5}\biggr\rangle\\\\proj_vu=\langle-5.2,2.6\rangle](https://tex.z-dn.net/?f=%5Cdisplaystyle%20proj_vu%3D%5Cbiggr%28%5Cfrac%7Bu%5Ccdot%20v%7D%7B%7C%7Cv%7C%7C%5E2%7D%5Cbiggr%29v%5C%5C%5C%5Cproj_vu%3D%5Cbiggr%28%5Cfrac%7B52%7D%7B80%7D%5Cbiggr%29%5Clangle-8%2C4%5Crangle%5C%5C%5C%5Cproj_vu%3D%5Cbiggr%5Clangle%5Cfrac%7B-416%7D%7B80%7D%20%2C%5Cfrac%7B208%7D%7B80%7D%5Cbiggr%5Crangle%5C%5C%5C%5Cproj_vu%3D%5Cbiggr%5Clangle%5Cfrac%7B-26%7D%7B5%7D%20%2C%5Cfrac%7B13%7D%7B5%7D%5Cbiggr%5Crangle%5C%5C%5C%5Cproj_vu%3D%5Clangle-5.2%2C2.6%5Crangle)
Thus, B is the correct answer
<u>Problem 2</u>
Treat the football and wind as vectors:
Football: ![u=\langle42\cos172^\circ,42\sin172^\circ\rangle](https://tex.z-dn.net/?f=u%3D%5Clangle42%5Ccos172%5E%5Ccirc%2C42%5Csin172%5E%5Ccirc%5Crangle)
Wind: ![v=\langle13\cos345^\circ,13\sin345^\circ\rangle](https://tex.z-dn.net/?f=v%3D%5Clangle13%5Ccos345%5E%5Ccirc%2C13%5Csin345%5E%5Ccirc%5Crangle)
Add the vectors: ![u+v=\langle42\cos172^\circ+13\cos345^\circ,42\sin172^\circ+13\sin345^\circ\rangle\approx\langle-29.034,2.481\rangle](https://tex.z-dn.net/?f=u%2Bv%3D%5Clangle42%5Ccos172%5E%5Ccirc%2B13%5Ccos345%5E%5Ccirc%2C42%5Csin172%5E%5Ccirc%2B13%5Csin345%5E%5Ccirc%5Crangle%5Capprox%5Clangle-29.034%2C2.481%5Crangle)
Find the magnitude of the resultant vector:
![||u+v||=\sqrt{(-29.034)^2+(2.481)^2}\approx29.14](https://tex.z-dn.net/?f=%7C%7Cu%2Bv%7C%7C%3D%5Csqrt%7B%28-29.034%29%5E2%2B%282.481%29%5E2%7D%5Capprox29.14)
Find the direction of the resultant vector:
![\displaystyle \theta=tan^{-1}\biggr(\frac{2.841}{-29.034}\biggr)\approx -5^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ctheta%3Dtan%5E%7B-1%7D%5Cbiggr%28%5Cfrac%7B2.841%7D%7B-29.034%7D%5Cbiggr%29%5Capprox%20-5%5E%5Ccirc)
Because our resultant vector is in Quadrant II, the true direction angle is 6° clockwise from the negative axis. This means that our true direction angle is ![180^\circ-5^\circ=175^\circ](https://tex.z-dn.net/?f=180%5E%5Ccirc-5%5E%5Ccirc%3D175%5E%5Ccirc)
Thus, C is the correct answer
<u>Problem 3</u>
We identify the initial point to be
and the terminal point to be
. The vector in component form can be found by subtracting the initial point from the terminal point:
![v=\langle-7-(-2),6-12\rangle=\langle-7+2,-6\rangle=\langle-5,-6\rangle](https://tex.z-dn.net/?f=v%3D%5Clangle-7-%28-2%29%2C6-12%5Crangle%3D%5Clangle-7%2B2%2C-6%5Crangle%3D%5Clangle-5%2C-6%5Crangle)
Next, we find the magnitude of the vector:
![||v||=\sqrt{(-5)^2+(-6)^2}=\sqrt{25+36}=\sqrt{61}\approx7.81](https://tex.z-dn.net/?f=%7C%7Cv%7C%7C%3D%5Csqrt%7B%28-5%29%5E2%2B%28-6%29%5E2%7D%3D%5Csqrt%7B25%2B36%7D%3D%5Csqrt%7B61%7D%5Capprox7.81)
And finally, we find the direction of the vector:
![\displaystyle \theta=tan^{-1}\biggr(\frac{6}{5}\biggr)\approx50.194^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ctheta%3Dtan%5E%7B-1%7D%5Cbiggr%28%5Cfrac%7B6%7D%7B5%7D%5Cbiggr%29%5Capprox50.194%5E%5Ccirc)
Keep in mind that since our vector is in Quadrant III, our direction angle also needs to be in Quadrant III, so the true direction angle is
.
Thus, A is the correct answer
<u>Problem 4</u>
Add the vectors:
![v_1+v_2=\langle-60,3\rangle+\langle4,14\rangle=\langle-60+4,3+14\rangle=\langle-56,17\rangle](https://tex.z-dn.net/?f=v_1%2Bv_2%3D%5Clangle-60%2C3%5Crangle%2B%5Clangle4%2C14%5Crangle%3D%5Clangle-60%2B4%2C3%2B14%5Crangle%3D%5Clangle-56%2C17%5Crangle)
Determine the magnitude of the vector:
![||v_1+v_2||=\sqrt{(-56)^2+(17)^2}=\sqrt{3136+289}=\sqrt{3425}\approx58.524](https://tex.z-dn.net/?f=%7C%7Cv_1%2Bv_2%7C%7C%3D%5Csqrt%7B%28-56%29%5E2%2B%2817%29%5E2%7D%3D%5Csqrt%7B3136%2B289%7D%3D%5Csqrt%7B3425%7D%5Capprox58.524)
Find the direction of the vector:
![\displaystyle\theta=tan^{-1}\biggr(\frac{17}{-56} \biggr)\approx-17^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctheta%3Dtan%5E%7B-1%7D%5Cbiggr%28%5Cfrac%7B17%7D%7B-56%7D%20%5Cbiggr%29%5Capprox-17%5E%5Ccirc)
Because our vector is in Quadrant II, then the direction angle we found is a reference angle, telling us the true direction angle is 17° clockwise from the negative x-axis, so the true direction angle is ![180^\circ-17^\circ=163^\circ](https://tex.z-dn.net/?f=180%5E%5Ccirc-17%5E%5Ccirc%3D163%5E%5Ccirc)
Thus, A is the correct answer
<u>Problem 5</u>
A vector in trigonometric form is represented as
where
is the magnitude of vector
and
is the direction of vector
.
Magnitude: ![||w||=\sqrt{(-16)^2+(-63)^2}=\sqrt{256+3969}=\sqrt{4225}=65](https://tex.z-dn.net/?f=%7C%7Cw%7C%7C%3D%5Csqrt%7B%28-16%29%5E2%2B%28-63%29%5E2%7D%3D%5Csqrt%7B256%2B3969%7D%3D%5Csqrt%7B4225%7D%3D65)
Direction: ![\displaystyle \theta=tan^{-1}\biggr(\frac{-63}{-16}\biggr)\approx75.75^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ctheta%3Dtan%5E%7B-1%7D%5Cbiggr%28%5Cfrac%7B-63%7D%7B-16%7D%5Cbiggr%29%5Capprox75.75%5E%5Ccirc)
As our vector is in Quadrant III, our true direction angle will be 75.75° counterclockwise from the negative x-axis, so our true direction angle will be
.
This means that our vector in trigonometric form is ![w=65(\cos255.75^\circ i+\sin255.75^\circ j)](https://tex.z-dn.net/?f=w%3D65%28%5Ccos255.75%5E%5Ccirc%20i%2B%5Csin255.75%5E%5Ccirc%20j%29)
Thus, C is the correct answer
<u>Problem 6</u>
Write the vectors in trigonometric form:
![u=\langle40\cos30^\circ,40\sin30^\circ\rangle\\v=\langle50\cos140^\circ,50\sin140^\circ\rangle](https://tex.z-dn.net/?f=u%3D%5Clangle40%5Ccos30%5E%5Ccirc%2C40%5Csin30%5E%5Ccirc%5Crangle%5C%5Cv%3D%5Clangle50%5Ccos140%5E%5Ccirc%2C50%5Csin140%5E%5Ccirc%5Crangle)
Add the vectors:
![u+v=\langle40\cos30^\circ+50\cos140^\circ,40\sin30^\circ+50\sin140^\circ\rangle\approx\langle-3.661,52.139\rangle](https://tex.z-dn.net/?f=u%2Bv%3D%5Clangle40%5Ccos30%5E%5Ccirc%2B50%5Ccos140%5E%5Ccirc%2C40%5Csin30%5E%5Ccirc%2B50%5Csin140%5E%5Ccirc%5Crangle%5Capprox%5Clangle-3.661%2C52.139%5Crangle)
Find the magnitude of the resultant vector:
![||u+v||=\sqrt{3.661^2+52.139^2}\approx52.268](https://tex.z-dn.net/?f=%7C%7Cu%2Bv%7C%7C%3D%5Csqrt%7B3.661%5E2%2B52.139%5E2%7D%5Capprox52.268)
Find the direction of the resultant vector:
![\displaystyle\theta=tan^{-1}\biggr(\frac{52.139}{-3.661} \biggr)\approx-86^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ctheta%3Dtan%5E%7B-1%7D%5Cbiggr%28%5Cfrac%7B52.139%7D%7B-3.661%7D%20%5Cbiggr%29%5Capprox-86%5E%5Ccirc)
Because our resultant vector is in Quadrant II, then our true direction angle will be 86° clockwise from the negative x-axis. So, our true direction angle is
.
Thus, B is the correct answer