We have to select 5 cards such that a queen of hearts does not get selected. In a pack of 52 cards, there is only one queen of hearts. Out of the remaining 51 cards, 5 cards can be selected. P<span>robability that a five card hand does not contain the queen of hearts</span><span> </span><span><span>47/52</span></span>
Answer:
y=mx+b is the final answer!
Step-by-step explanation:
i used a calculator so i am 100% sure these are right.
For AD:
AD=root((c-0)^2 + (d-0)^2)=root((c)^2 + (d)^2)
For BC:
BC=root(((b+c) - b)^2+(d-0)^2)=root((c)^2+(d)^2)
For AB:
AB=root((b-0)^2 + (0-0)^2)=root((b)^2 + (0)^2)=root((b)^2)
For CD:
CD=root((c-(b+c))^2 + (d-d)^2)
CD=root((b)^2 + (0)^2)
CD=root((b)^2)
Step-by-step explanation:
(x^4)^3=(x^3)^4 , true
=> x^(4×3) = x^(3×4) = x^12
13^4 x 13^7= (13^4)^7, false
13^(4+7) = 13^11
(13^4)^7 = 13^(4×7) = 13^28
y^5 x y^0/y^3=(y^2)^1 , true
y^5 x y^0/y^3 = y^(5+0-3) = y^2
(y^2)^1 = y^(2×1) = y^2
q^0 x q^5/q^2=(q^3)^2/q^3, true
q^0 x q^5/q^2= q^(0+5-2)= q^3
(q^3)^2/q^3 = q^(3×2-3) = q^3