Answer:
The answer of this question is molecule
• Before the balloon was placed inside the hot water, the pressure was the same inside and outside the balloon. The hot water raised the kinetic energy of the air molecules inside the balloon, expanding the balloon, through thermal expansion.
• (1) the pressure of air inside the balloon increased, (2) the volume of the inside of the balloon increased as well, and (3) the temperature of the balloon increased. Note that pressure and volume are inversely proportional, and pressure and temperature are directly proportional. Therefore as the temperature increases, the pressure inside will increase, causing an increase in the volume. At a certain point though the volume will increase too much as to cause a significant decrease in pressure.
• The air molecules will gain kinetic energy, hence (1) increasing the molecules's speed, and (2) heating the air molecules.
C. Melting ice.
It is C because melting ice is a change of state from solid to liquid which requires an addition of energy(or entropy) into the system.
Condensation of water occurs from a gas to a liquid state, which takes energy out of the system(water) and gives it to the surroundings(air around it). Freezing water is the same as condensation except for the state change. Deposition is simply gas to a solid instantaneously so you can again see it as with the other two examples.
The right option is; b. mechanical
Mechanical energy is the best description of the energy of the ball as it flies over the pitcher’s head.
Mechanical energy is the energy that an object acquires due to its position or due to its motion. From the question, the baseball player has chemical potential energy (stored as food) which is transformed into work. As the baseball player hits the ball, there is energy exchange in which the ball acquires energy to perform its work. The energy obtained by the ball upon which work is done is called mechanical energy.
Answer:
Two tectonic plates had the same density and a collision of the plates pushed the advancing plate that contained fossilized marine organisms upward forming the Himalayan mountains and Mount Everest.