Answer:
Density of the He atom = 12.69 g/cm³
Explanation:
From the information given:
Since 1 mole of an atom = 6.022x 10²³ atoms)
1 atom of He =
The volume can be determined as folows:
since the diameter of the He atom is approximately 0.10 nm
the radius of the He = = 0.05 nm
Converting it into cm, we have:
Assuming that it is a sphere, the volume of a sphere is
=
=
=
Finally, the density can be calcuated by using the formula :
D = 12.69 g/cm³
Density of the He atom = 12.69 g/cm³
The first step in the scientific methods is ask a question
Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>
Answer: M = 2.08 M
Explanation: Molarity is expressed as the number of moles per unit volume in liters. First convert the mass of HCl to moles using its molar mass. Then substitute the variables to the formula for molarity.
75.00 g HCl x 1 mole HCl / 36 g HCl
= 2.08 moles HCl
For Molarity.
M = n / L
= 2.08 moles HCl / 1.000 L
= 2.08 M
Answer:
33.5 g/mol
Explanation:
PV=nRT
(1.40 atm)(8.00 L)=n(0.08206)(295 K)
n=0.463 mol
15.50 g/0.463 mol=33.5 g/mol