Answer:
4 1/2
Step-by-step explanation:
Answer:
740
Step-by-step explanation:
The n th term of an arithmetic series is
= a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Given a₃ = 7 and a₇ = (3 × 7) + 2 = 21 + 2 = 23 , then
a₁ + 2d = 7 → (1)
a₁ + 6d = 23 → (2)
Subtract (1) from (2) term by term
4d = 16 ( divide both sides by 4 )
d = 4
Substitute d = 4 into (1)
a₁ + 2(4) = 7
a₁ + 8 = 7 ( subtract 8 from both sides )
a₁ = - 1
The sum to n terms of an arithmetic series is
=
[ 2a₁ + (n - 1)d ] , thus
=
[ (2 × - 1) + (19 × 4) ]
= 10(- 2 + 76) = 10 × 74 = 740
The consecutive number = 1,2 or 7,8 not 5,8 etc
whole number = 1,6,100
square root of 60 = 7.746
so, if you want to know two consecutive whole numbers b/w swrt of 60
that would be
7 less than 7.6 less than 8
Answer:
Area of trapezium = 4.4132 R²
Step-by-step explanation:
Given, MNPK is a trapezoid
MN = PK and ∠NMK = 65°
OT = R.
⇒ ∠PKM = 65° and also ∠MNP = ∠KPN = x (say).
Now, sum of interior angles in a quadrilateral of 4 sides = 360°.
⇒ x + x + 65° + 65° = 360°
⇒ x = 115°.
Here, NS is a tangent to the circle and ∠NSO = 90°
consider triangle NOS;
line joining O and N bisects the angle ∠MNP
⇒ ∠ONS =
= 57.5°
Now, tan(57.5°) = 
⇒ 1.5697 = 
⇒ SN = 0.637 R
⇒ NP = 2×SN = 2× 0.637 R = 1.274 R
Now, draw a line parallel to ST from N to line MK
let the intersection point be Q.
⇒ NQ = 2R
Consider triangle NQM,
tan(∠NMQ) = 
⇒ tan65° =
⇒ QM =
QM = 0.9326 R .
⇒ MT = MQ + QT
= 0.9326 R + 0.637 R (as QT = SN)
⇒ MT = 1.5696 R
⇒ MK = 2×MT = 2×1.5696 R = 3.1392 R
Now, area of trapezium is (sum of parallel sides/ 2)×(distance between them).
⇒ A = (
) × (ST)
= (
) × 2 R
= 4.4132 R²
⇒ Area of trapezium = 4.4132 R²
Answer: The coordinate are
( 5 , 2.5 )
Distance = 5
Step-by-step explanation:
The coordinates of the rest stop will be the mid point between the high school is at point (3, 4) and the stadium in Columbus at point (7, 1).
Mid point = (X1 +X2)/2 , (Y1+Y2)/2
(3+7)/2 , (4+1)/2 = ( 5 , 2.5 )
The approximate distance between the high school and the stadium will be
D^2 = (7-3)^2 +( 4-1)^2
Where D = distance
D^2 = 4^2 + 3^2
D = 5