300,000 + 50,000 + 4,000 + 700 + 80 + 2
---------------------------
Answer:
Amdjss
Step-by-step explanation:
If order matters, then there are 12 ways to do this
If order does not matter, then there are 6 ways to do this
===========================================
We have 4 choices for the first slot and 3 choices for the next (we can't reuse a letter) so that's where 4*3 = 12 comes from
If order doesn't matter, then something like AB is the same as BA. So we are doubly counting each possible combo. To fix this, we divide by 2: 12/2 = 6
To be more formal, you can use nPr and nCr to get 12 and 6 respectively (use n = 4 and r = 2)
Answer:
brainliest plz
Step-by-step explanation:
what do you need help with?
The new parking lot must hold twice as many cars as the previous parking lot. The previous parking lot could hold 56 cars. So this means the new parking lot must hold 2 x 56 = 112 cars
Let y represent the number of cars in each row, and x be the number of total rows in the parking lot. Since the number of cars in each row must be 6 less than the number of rows, we can write the equation as:
y = x - 6 (1)
The product of cars in each row and the number of rows will give the total number of cars. So we can write the equation as:
xy = 112 (2)
Using the above two equations, the civil engineer can find the number of rows he should include in the new parking lot.
Using the value of y from equation 1 to 2, we get:
x(x - 6) = 112 (3)
This equation is only in terms of x, i.e. the number of rows and can be directly solved to find the number of rows that must in new parking lot.