Answer:
20.2 seconds
Explanation:
The airplane (and therefore the crate) initially has no vertical velocity, so v₀ = 0 m/s.
The crate is in free fall, so a = -9.8 m/s².
The crate falls downward, so Δx = -2000 m.
Find: t, the time it takes for the crate to land.
Δx = v₀ t + ½ at²
-2000 m = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 20.2 s
It takes 20.2 seconds for the crate to land.
Answer:
R = 7 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance. In this way, we have the following equation.
V = I*R
where:
V = voltage = 49 [V] (units of volts)
I = current = 7 [amp] (amperes)
R = resistance [ohms]
Now clearing R.
R =V/I
R = 49/7
R = 7 [amp]
Convection currents in the mantle
Answer:
B. The number of wave cycles that pass through a specific point within a given time period.
Answer:
The frictional force acting on the bear during the slide is 207.5 N
Explanation:
Given;
mass of beam, m = 25-kg
vertical height, h = 12 m
speed of fall, v = 6 m/s
Change in potential energy of the beam:
ΔP.E = -mgh = - 25 x 9.8 x 12 = -2940 J
Change in kinetic energy of the beam:
Δ K.E = ¹/₂mv² = ¹/₂ x 25 x (6)² = 450 J
Change in thermal energy of the system due to friction:
ΔE = - (ΔP.E + Δ K.E)
ΔE = - (-2940 J + 450 J)
ΔE = 2940 J - 450 J = 2490 J
Frictional force (in N) acting on the bear during the slide:
F x d = Fk x h = ΔE
Where;
Fk is the frictional force
Fk = ΔE/h
Fk = 2490J / 12m
Fk = 207.5 N
Therefore, the frictional force acting on the bear during the slide is 207.5 N