We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
Answer:
Explanation:
Calculating the exit temperature for K = 1.4
The value of
is determined via the expression:

where ;
R = universal gas constant = 
k = constant = 1.4


The derived expression from mass and energy rate balances reduce for the isothermal process of ideal gas is :
------ equation(1)
we can rewrite the above equation as :


where:



Thus, the exit temperature = 402.36 K
The exit pressure is determined by using the relation:



Therefore, the exit pressure is 17.79 bar
Answer:
<em>The final velocity is 20 m/s.</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, and t the time, the final speed can be calculated as follows:

The provided data is: vo=10 m/s,
, t=2 s. The final velocity is:


The final velocity is 20 m/s.
Answer:
hmmmmmmmm
Explanation:
mmmmmmmmmmmmmmmmmmmmmmm pay attention in class kid