Electroreception is limited to aquatic environments because on here is the resistivity of the medium is low enough for electric currents to be generated as the result of electric fields of biological origin. In air, the resistivity of the environment is so high that electric fields from biological sources do not generate a significant electric current. Electroreceptor are found in a number of species of fish, and in at least one species of mammal, the Duck-Billed platypus.
The equivalent of the Newton's second law for rotational motions is:

where

is the net torque acting on the object

is its moment of inertia

is the angular acceleration of the object.
Re-arranging the formula, we get

and since we know the net torque acting on the (vase+potter's wheel) system,

, and its angular acceleration,

, we can calculate the moment of inertia of the system:
Answer:
Explanation:
Theoretical efficiency = T₁ - T₂ / T₁ where T₁ and T₂ is absolute temperature of hot and cold end of the heat engine.
= 600 / (273 + 700 )
= 600 / 973
= .6166
operating efficiency = 40% of .6166
= .4 x .6166
= .2466 = 24.66 %
efficiency = work output / heat input
= 5000 / heat input = .2466
heat input = 5000 / .2466
= 20275.75 J .
HEAT EXTRACED = 20275.75 J.
Answer:
Increase in the temperature of water would be 0.9 degree C
Explanation:
As we know by energy conservation
Change in the gravitational potential energy of the cylinder = increase in the thermal energy of the water
Here we know that the gravitational potential energy of the cylinder is given as

here we have
h = 300 m
now we can say

now if the cylinder falls from height h = 100 m
then we have

now from above two equations

